FEATURES

Single 8-Bit DAC
20-Pin SOIC/TSSOP Package
+2.7 V to +5.5 V Operation
Internal and External Reference Capability
DAC Power-Down Function
Parallel Interface
On-Chip Output Buffer Rail-to-Rail Operation
Low Power Operation 1.75 mA max @ 3.3 V
Power-Down to $1 \mu A \max @ 25^{\circ} \mathrm{C}$

APPLICATIONS

Portable Battery Powered Instruments Digital Gain and Offset Adjustment
Programmable Voltage and Current Sources
Programmable Attenuators

GENERAL DESCRIPTION

The AD 7801 is a single, 8-bit, voltage out D AC that operates from a single +2.7 V to +5.5 V supply. Its on-chip precision output buffer allows the DAC output to swing rail to rail. T he AD 7801 has a parallel microprocessor and DSP compatible interface with high speed registers and double buffered interface logic. D ata is loaded to the input register on the rising edge of $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WR}}$.
Reference selection for the AD 7801 can be either an internal reference derived from the $\mathrm{V}_{\text {DD }}$ or an external reference applied at the REFIN pin. The output of the DAC can be cleared by using the asynchronous $\overline{\mathrm{CLR}}$ input.

The low power consumption of this part makes it ideally suited to portable battery operated equipment. T he power consumption is less than 5 mW at 3.3 V , reducing to less than $3 \mu \mathrm{~W}$ in power-down mode.
The AD 7801 is available in a 20 -lead SOIC and a 20-lead TSSOP package.

REV. 0

[^0]FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. L ow Power, Single Supply operation. T his part operates from a single +2.7 V to +5.5 V supply and consumes typically 5 mW at 3 V , making it ideal for battery powered applications.
2. The on-chip output buffer amplifier allows the output of the DAC to swing rail to rail with a settling time of typically $1.2 \mu \mathrm{~s}$.
3. Internal or external reference capability.
4. High speed parallel interface.
5. Power-down capability. When powered down the DAC consumes less than $1 \mu \mathrm{~A}$ at $25^{\circ} \mathrm{C}$.
6. Packaged in 20-lead SOIC and TSSOP packages.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700 World Wide Web Site: http://www.analog.com Fax: 617/326-8703 © Analog Devices, Inc., 1997

Parameter	B Versions ${ }^{1}$	Units	Conditions/Comments
STATIC PERFORMANCE Resolution Relative Accuracy ${ }^{2}$ Differential N onlinearity Zero-C ode Error @ $+25^{\circ} \mathrm{C}$ Full-Scale Error Zero-C ode Error Drift Gain Error ${ }^{3}$	$\begin{aligned} & 8 \\ & \pm 1 \\ & \pm 1 \\ & 3 \\ & -0.75 \\ & 100 \\ & \pm 1 \end{aligned}$	Bits LSB max LSB max LSB typ LSB typ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ typ \% FSR typ	Guaranteed M onotonic All Zeros Loaded to DAC Register All O nes Loaded to DAC Register
DAC REFERENCEINPUT REFIN Input Range REFIN Input Impedance	$\begin{aligned} & 1 \text { to } V_{D D} / 2 \\ & 10 \end{aligned}$	$V \min / V \max$ $\mathrm{M} \Omega$ typ	
OUTPUT CHARACTERISTICS Output Voltage Range Output Voltage Settling Time Slew Rate D igital-to-A nalog G litch Impulse Digital F eedthrough DC Output Impedance Short Circuit Current Power Supply Rejection R atio ${ }^{4}$	$\begin{aligned} & 0 \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 2 \\ & 7.5 \\ & 1 \\ & 0.2 \\ & 40 \\ & 14 \\ & 0.0003 \end{aligned}$	$\mathrm{V} \min / \mathrm{V} \max$ $\mu \mathrm{s}$ max V/us typ nV-s typ nV-s typ Ω typ mA typ \%/\% max	T ypically $1.2 \mu \mathrm{~S}$ 1 LSB C hange Around M ajor C arry $\Delta V_{D D}= \pm 10 \%$
LOGIC IN PUTS Input Current $V_{\text {inL }}$, Input Low Voltage $V_{\text {INL }}$, Input Low Voltage $\mathrm{V}_{\text {INH }}$, Input High Voltage $\mathrm{V}_{\mathrm{INH}}$, Input High Voltage Pin C apacitance	$\begin{aligned} & \pm 10 \\ & 0.8 \\ & 0.6 \\ & 2.4 \\ & 2.1 \\ & 7 \end{aligned}$	$\mu \mathrm{A} \max$ V max V max V min V min pF max	$\begin{aligned} & V_{D D}=+5 \mathrm{~V} \\ & V_{D D}=+3 \mathrm{~V} \\ & V_{D D}=+5 \mathrm{~V} \\ & V_{D D}=+3 \mathrm{~V} \end{aligned}$
POWER REQUIREMENTS $V_{D D}$ IDD (N ormal M ode) $V_{D D}=3.3 \mathrm{~V}$ @ $25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ $V_{D D}=5.5 \mathrm{~V}$ @ $25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ IDD (Power-D own) @ $25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	$2.7 / 5.5$ 1.55 1.75 2.35 2.5 1 2	$\mathrm{V} \min / \mathrm{V} \max$ mA max mA max mA max mA max $\mu \mathrm{A}$ max $\mu \mathrm{A}$ max	DAC Active and Excluding Load Current $V_{I H}=V_{D D}$ and $V_{I L}=G N D$ See Figure 6 $V_{I H}=V_{D D} \text { and } V_{I L}=G N D$ See Figure 18

NOTES

${ }^{1} \mathrm{~T}$ emperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
${ }^{2}$ Relative Accuracy is calculated using a reduced code range of 15 to 245.
${ }^{3} \mathrm{G}$ ain Error is specified between Codes 15 and 245 . The actual error at Code 15 is typically 3 LSB.
${ }^{4}$ Guaranteed by characterization at product release, not production tested.
Specifications subject to change without notice.

Figure 1. Timing Diagram for Parallel Data Write

TIMING CHARACTERISTICS $1,2 \quad\left(\mathrm{~V}_{D D}=+2.7 \mathrm{~V}\right.$ to +5.5 V ; $\mathrm{GND}=0 \mathrm{~V}$; Internal $\mathrm{V}_{\mathrm{DD}} / 2$ Reference. All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted.)

Parameter	Limit at $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$ (B Version)	Units	Conditions/Comments
t_{1}	0	ns min	Chip Select to W rite Setup Time
t_{2}	0	ns min	Chip Select to W rite H old T ime
t_{3}	20	$n s$ min	Write Pulse Width
t_{4}	15	$n s$ min	D ata Setup Time
t_{5}	4.5	ns min	D ata H old T ime
t_{6}	20	$n s$ min	Write to LDAC Setup Time
t_{7}	20	ns min	LDAC Pulse Width
t_{8}	20	ns min	CLR Pulse Width

NOTES
${ }^{1}$ Sample tested at $+25^{\circ} \mathrm{C}$ to ensure compliance. All input signals are specified with $\mathrm{tr}=\mathrm{tf}=5 \mathrm{~ns}\left(10 \%\right.$ to 90% of $\left.\mathrm{V}_{\mathrm{DD}}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{I L}+\mathrm{V}_{\mathrm{IH}}\right) / 2$. tr and tf should not exceed $1 \mu \mathrm{~s}$ on any digital input.
${ }^{2}$ See Figure 1.

ABSOLUTE MAXIMUM RATINGS*

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

$V_{D D}$ to GND -0.3 V to +7 V
Reference Input Voltage to $A G N D \ldots . .0 .3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Input Voltage to D GND -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
AGND to DGND . - 0.3 V to +0.3 V
$V_{\text {OUt }}$ to $A G N D$...................... -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
O perating T emperature Range

Commercial (B Version)	to $+105^{\circ} \mathrm{C}$
Storage Temperature R ange	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
SSOP Package, Power Dissipation	700 mW
$\theta_{\text {JA }}$ T hermal Impedance	$143{ }^{\circ} \mathrm{C} / \mathrm{W}$
Lead T emperature, Soldering	
Vapor Phase (60 sec)	$+215^{\circ} \mathrm{C}$
Infrared (15 sec)	$+220^{\circ} \mathrm{C}$
SOIC Package, Power Dissipation	870 mW
$\theta_{\text {JA }}$ T hermal Impedance	$74^{\circ} \mathrm{C} / \mathrm{W}$
Lead T emperature, Soldering	
Vapor Phase (60 sec)	$+215^{\circ} \mathrm{C}$
Infrared (15 sec)	$+220^{\circ} \mathrm{C}$

*Stresses above those listed under Absolute M aximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ORDERING GUIDE

Model	Temperature Range	Package Option*
AD 7801BR	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	R-20
AD 7801BRU	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	RU -20

*R = Small Outline; RU = Thin Shrink Small Outline.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 7801 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION

PIN FUNCTION DESCRIPTIONS

Pin No.	Mnemonic	Function
1-8	D 7-D 0	Parallel D ata Inputs. 8-bit data is loaded to the input register of the AD 7801 under the control of $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$.
9	$\overline{\mathrm{CS}}$	C hip Select. Active low logic input.
10	$\overline{\mathrm{WR}}$	Write Input. $\overline{\mathrm{WR}}$ is an active low logic input used in conjunction with $\overline{\mathrm{CS}}$ to write data to the input register.
11	DGND	Digital Ground
12	$\overline{\mathrm{PD}}$	Active low input used to put the part into low power mode reducing current consumption to less than $1 \mu \mathrm{~A}$.
13	$\overline{\text { LDAC }}$	L oad DAC Logic Input. When this logic input is taken low the DAC output is updated with the contents of its DAC register. If $\overline{\mathrm{LDAC}}$ is permanently tied low the DAC is updated on the rising edge of $\overline{\mathrm{WR}}$.
14	$\overline{\text { CLR }}$	A synchronous Clear Input (Active Low). When this input is taken low the DAC register is loaded with all zeroes and the DAC output is cleared to zero volts.
15	$V_{\text {D }}$	Power Supply Input. This part can be operated from +2.7 V to +5.5 V and should be decoupled to GND.
16	REFIN	External Reference Input. This can be used as the reference for the DAC. The range on this reference input is 1 V to $\mathrm{V}_{D D} / 2$. If REFIN is tied directly to $\mathrm{V}_{D D}$ the internal $\mathrm{V}_{D D} / 2$ reference is selected.
17	AGND	Analog Ground reference point and return point for all analog current on the part.
18	NC	No C onnect Pin.
19	$\mathrm{V}_{\text {OUT }}$	A nalog Output V oltage from the DAC. The output amplifier can swing rail to rail on its output.
20	DGND	Digital Ground reference point and return point for all digital current on the part.

Typical Performance Characteristics- AD7801

Figure 2. Output Sink Current Capability with $V_{D D}=3 \mathrm{~V}$ and $V_{D D}=5 \mathrm{~V}$

Figure 5. Relative Accuracy vs. External Reference

Figure 8. Large Scale Signal Frequency Response

Figure 3. Output Source Current Capability with $V_{D D}=5 \mathrm{~V}$

Figure 6. Typical Supply Current vs. Temperature

Figure 9. Full-Scale Settling Time

Figure 4. Output Source Current Capability with $V_{D D}=3 \mathrm{~V}$

Figure 7. Typical Supply Current vs. Supply Voltage

Figure 10. Exiting Power-Down (Full Power-Down)

AD7801- Typical Performance Characteristics

Figure 11. Power-On-Reset

Figure 14. Integral Linearity Plot

Figure 12. Zero Code Error vs. Temperature

Figure 15. Typical INL vs. Temperature

Figure 13. Small-Scale Settling Time

Figure 16. Typical DNL vs. Temperature

Figure 17. Typical Internal Reference Error vs. Temperature

Figure 18. Power-Down Current vs.
Temperature

TERMINOLOGY

Integral Nonlinearity

F or the DAC, Relative Accuracy or End-Point nonlinearity is a measure of the maximum deviation, in LSBs, from a straight line passing through the endpoints of the D AC transfer function. A graphical representation of the transfer curve is shown in Figure 14.

Differential Nonlinearity

Differential N onlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of ± 1 LSB maximum ensures monotonicity.

Zero-Code Error

Zero-Code Error is the measured output voltage from $\mathrm{V}_{\text {OUT }}$ of the DAC when zero code (all zeros) is loaded to the DAC latch. It is due to a combination of the offset errors in the DAC and output amplifier. Zero-code error is expressed in LSBs.

Gain Error

This is a measure of the span error of the DAC. It is the deviation in slope of the D AC transfer characteristic from ideal expressed as a percent of the full-scale value. It includes fullscale errors but not offset errors.

Digital-to-Analog Glitch Impulse

Digital-to-Analog G litch Impulse is the impulse injected into the analog output when the digital inputs change state with the DAC selected and the LDAC used to update the DAC. It is normally specified as the area of the glitch in nV -secs and measured when the digital input code is changed by 1 LSB at the major carry transition.

Digital Feedthrough

Digital Feedthrough is a measure of the impulse injected into the analog output of a DAC from the digital inputs of the same DAC, but is measured when the DAC is not updated. It is specified in nV -secs and measured with a full-scale code change on the data bus, i.e., from all 0 s to all 1 s and vice versa.

Power Supply Rejection Ratio (PSRR)

This specification indicates how the output of the DAC is affected by changes in the power supply voltage. Power supply rejection ratio is quoted in terms of \% change in output per \% change in $V_{D D}$ for full-scale output of the $D A C . V_{D D}$ is varied $\pm 10 \%$.

GENERAL DESCRIPTION
 D/A Section

The AD 7801 is an 8-bit voltage output digital-to-analog converter. The architecture consists of a reference amplifier and a current source DAC followed by a current-to-voltage converter capable of generating rail-to-rail voltages on the output of the DAC. Figure 19 shows a block diagram of the basic DAC architecture.

Figure 19. DAC Architecture
The DAC output is internally buffered and has rail-to-rail output characteristics. The output amplifier is capable of driving a load of 100 pF and $10 \mathrm{k} \Omega$ to both V_{DD} and ground. The reference selection for the DAC can be either internally generated from $V_{D D}$ or externally applied through the REFIN pin. A comparator on the REFIN pin detects whether the required reference is the internally generated reference or the externally applied voltage to the REFIN pin. If REFIN is connected to $V_{D D}$, the reference selected is the internally generated $V_{D D} / 2$ reference. When an externally applied voltage is more than one volt below V_{DD}, the comparator selection switches to the externally applied voltage on the REFIN pin. The range on the external reference input is from 1.0 V to $\mathrm{V}_{\mathrm{DD}} / 2 \mathrm{~V}$. The output voltage from the DAC is given by:

$$
\mathrm{V}_{0}=2 \mathrm{~V}_{\text {REF }} \times\left(\frac{\mathrm{N}}{256}\right)
$$

where $\mathrm{V}_{\text {REF }}$ is the voltage applied to the external REFIN pin or $\mathrm{V}_{\mathrm{DD}} / 2$ when the internal reference is selected. N is the decimal equivalent of the code loaded to the DAC register and ranges from 0 to 255 .

Figure 20. Reference Selection Circuitry

AD7801

Reference

The AD 7801 has the ability to use either an external reference applied through the REFIN pin or an internal reference generated from $V_{D D}$. Figure 20 shows the reference input arrangement where either the internal $\mathrm{V}_{\mathrm{DD}} / 2$ or the externally applied reference can be selected.

The internal reference is selected by tying the REFIN pin to $V_{D D}$. If an external reference is to be used, this can be directly applied to the REFIN pin and if this is 1 V below V_{DD}, the internal circuitry will select this externally applied reference as the reference source for the DAC .

Digital Interface

The AD 7801 contains a fast parallel interface allowing this DAC to interface to industry standard microprocessors, microcontrollers and DSP machines. There are two modes in which this parallel interface can be configured to update the DAC output. The synchronous update mode allows synchronous updating of the DAC output; the automatic update mode allows the DAC to be updated individually following a write cycle. Figure 21 shows the internal logic associated with the digital interface. The PO N ST RB signal is internally generated from the power-on reset circuitry and is low during the poweron reset phase of the power up procedure.

Figure 21. Logic Interface
The AD 7801 has a double buffered interface, which allows for synchronous updating of the D AC output. Figure 22 shows a block diagram of the register arrangement within the AD 7801.

Figure 22. Register Arrangement

Automatic Update Mode

In this mode of operation the $\overline{\text { LDAC }}$ signal is permanently tied low. The state of the $\overline{\mathrm{LDAC}}$ is sampled on the rising edge of $\overline{\mathrm{WR}}$. $\overline{\text { LDAC }}$ being low allows the DAC register to be automatically updated on the rising edge of $\overline{\mathrm{WR}}$. The output update occurs on the rising edge of $\overline{\mathrm{WR}}$. Figure 23 shows the timing associated with the automatic update mode of operation and al so the status of the various registers during this frame.

Figure 23. Timing and Register Arrangement for Automatic Update Mode

Synchronous Update Mode

In this mode of operation the $\overline{\text { LDAC }}$ signal is used to update the DAC output to synchronize with other updates in the system. The state of the $\overline{L D A C}$ is sampled on the rising edge of $\overline{\mathrm{WR}}$. If $\overline{\text { LDAC }}$ is high, the automatic update mode is disabled and the DAC latch is updated at any time after the write by taking $\overline{\text { LDAC }}$ low. The output update occurs on the falling edge of $\overline{\text { LDAC. }} \overline{\text { LDAC }}$ must be taken back high again before the next data transfer takes place. Figure 24 shows the timing associated with the synchronous update mode of operation and also the status of the various registers during this frame.

Figure 24. Timing and Register Arrangement for Synchronous Update Mode

POWER-ON RESET

The AD 7801 has a power-on reset circuit designed to allow output stability during power up. This circuit holds the D AC in a reset state until a write takes place to the DAC. In the reset state all zeros are latched into the input register of the DAC and the DAC register is in transparent mode thus the output of the DAC is held at ground potential until a write takes place to the DAC. T he power-on reset circuitry generates a PON STRB signal which is a gating signal used within the logic to identify a power-on condition.

POWER-DOWN FEATURES

The AD 7801 has a power-down feature implemented by exercising the external $\overline{\mathrm{PD}}$ pin. An active low signal puts the complete DAC into power-down mode. When in power-down, the current consumption of the device is reduced to less than $1 \mu \mathrm{~A}$ max at $+25^{\circ} \mathrm{C}$ or $2 \mu \mathrm{~A}$ max over temperature, making the device suitable for use in portable battery powered equipment. T he internal reference resistors, the reference bias servo loop, the output amplifier and associated linear circuitry are all shut down when the power-down is activated. The output terminal sees a load of $\approx 23 \mathrm{k} \Omega$ to GND when in power-down mode as shown in Figure 25. The contents of the data register are unaffected when in power-down mode. T he device typically comes out of power-down in $13 \mu \mathrm{~s}$ (see Figure 10).

Figure 25. Output Stage During Power-Down

Analog Outputs

The AD 7801 contains a voltage output D AC with 8-bit resolution and rail-to-rail operation. The output buffer provides a gain of two at the output. Figures 2,3 and 4 show the source and sink capabilities of the output amplifier. The slew rate of the output amplifier is typically $7.5 \mathrm{~V} / \mu \mathrm{s}$ and has a full-scale settling to eight bits with a 100 pF capacitive load in typically $1.2 \mu \mathrm{~s}$.
The input coding to the DAC is straight binary. T able I shows the binary transfer function for the AD 7801. Figure 26 shows the DAC transfer function for binary coding. Any D AC output voltage can be expressed as:

$$
V_{\text {OUT }}=2 \times V_{\text {REF }}\left(\frac{N}{256}\right)
$$

where:
$N \quad$ is the decimal equivalent of the binary input code. N ranges from 0 to 255.
$\mathrm{V}_{\text {Ref }}$ is the voltage applied to the external REFIN pin when the external reference is selected and is $\mathrm{V}_{\mathrm{DD}} / 2$ if the internal reference is used.

Table I. Output Voltage for Selected Input Codes

$\begin{aligned} & \text { Digital } \\ & \text { MSB . . . LSB } \end{aligned}$		Analog Output	
11111111		$2 \times \frac{255}{256} \times V_{\text {REF }} \mathrm{V}$	
11111110		$2 \times \frac{254}{256} \times V_{\text {REF }} V$	
10000001		$2 \times \frac{129}{256} \times V_{\text {REF }} V$	
10000000		$\begin{aligned} & V_{\text {REF }} V \\ & 2 \times \frac{127}{256} \times V_{\text {REF }} V \end{aligned}$	
01111111			
00000001		$2 \times \frac{V_{\text {REF }}}{256} V$	
00000000		0 V	
DAC INPUT CODE	01	7F 8081 FE	

Figure 26. DAC Transfer Function

AD7801

Figure 27 shows a typical setup for the AD 7801 when using its internal reference. The internal reference is selected by tying the REFIN pin to $V_{D D}$. Internally in the reference section there is a reference detect circuit that will select the internal $\mathrm{V}_{\mathrm{DD}} / 2$ based on the voltage connected to the REFIN pin. If REFIN is within a threshold voltage of a PM OS device (approximately 1 V) of $V_{D D}$ the internal reference is selected. When the REFIN voltage is more than 1 V below V_{DD}, the externally applied voltage at this pin is used as the reference for the DAC. The internal reference on the AD 7801 is $\mathrm{V}_{\mathrm{DD}} / 2$, the output current to voltage converter within the AD 7801 provides a gain of two. Thus the output range of the $D A C$ is from 0 V to V_{DD}, based on Table I.

Figure 27. Typical Configuration Selecting the Internal Reference
Figure 28 shows a typical setup for the AD 7801 when using an external reference. T he reference range for the AD 7801 is from 1 V to $\mathrm{V}_{D D} / 2 \mathrm{~V}$. Higher values of reference can be incorporated but will saturate the output at both the top and bottom end of the transfer function. There is a gain of two from input to output on the AD 7801. Suitable references for 5 V operation are the AD 780 and REF 192. For 3 V operation a suitable external reference would be the AD 589 a 1.23 V bandgap reference.

Figure 28. Typical Configuration Using An External Reference

MICROPROCESSOR INTERFACING

AD 7801-ADSP-2101/ADSP-2103 Interface
Figure 29 shows an interface between the AD 7801 and the ADSP2101/AD SP-2103. The fast interface timing associated with the AD 7801 allows easy interface to the ADSP-2101/ADSP-2103.
$\overline{\text { LDAC }}$ is permanently tied low in this circuit so the DAC output is updated on the rising edge of the $\overline{\mathrm{WR}}$ signal.
D ata is loaded to the AD 7801 input register using the following ADSP-21xx instruction.

$$
D M(D A C)=M R 0
$$

M R0 = AD SP-21xx M R0 Register.
DAC = D ecoded DAC Address.

Figure 29. AD7801-ADSP-2101/ADSP-2103 Interface

AD7801-TMS320C 20 Interface

Figure 30 shows an interface between the AD 7801 and the T M S320C 20. D ata is loaded to the AD 7801 using the following instruction:

OUT DAC, D
DAC = Decoded DAC Address.
$\mathrm{D}=\mathrm{D}$ ata M emory Address.

Figure 30. AD7801-TMS320C20 Interface

In the circuit shown the $\overline{\mathrm{LDAC}}$ is hardwired low thus the DAC output is updated on the rising edge of $\overline{\mathrm{WR}}$. Some applications may require synchronous updating of the DAC in the AD 7801. In this case the LDAC signal can be driven from an external timer or can be controlled by the microprocessor. One option for synchronous updating is to decode the $\overline{\text { LDAC }}$ from the address bus so a write operation at this address will synchronously update the D AC output. A simple OR gate with one input driven from the decoded address and the second input from the $\overline{\mathrm{WR}}$ signal will implement this function.

AD7801-8051/8088 Interface

Figure 31 shows a serial interface between the AD 7801 and the 8051/8088 processors.

Figure 31. AD7801-8051/8088 Interface

APPLICATIONS

Bipolar Operation Using the AD 7801

T he AD 7801 has been designed for unipolar operation but bipolar operation is possible using the circuit in Figure 32. T he circuit shown is configured for an output voltage range of -5 V to +5 V . Rail-to-rail operation at the amplifier output is achievable by using an AD820 or OP295 as the output amplifier.
The output voltage for any input code can be calculated as follows:

$$
V_{0}=\left[R_{2}\left(1+\frac{R 4}{R 3}\right) /(R 1+R 2) \times\left(\frac{2 V_{\text {REF }} D}{256}\right)-V_{\text {REF }}\left(\frac{R 4}{R 3}\right)\right]
$$

Where D is the decimal equivalent of the code loaded to the $D A C$ and $V_{\text {REF }}$ is the reference voltage input.
With $\mathrm{V}_{\mathrm{REF}}=2.5 \mathrm{~V}, \mathrm{R} 1=\mathrm{R} 3=10 \mathrm{k} \Omega$ and $\mathrm{R} 2=\mathrm{R} 4=20 \mathrm{k} \Omega$ and $V_{D D}=5 \mathrm{~V}$.

$$
V_{0}=\left(\frac{10 D}{256}\right)-5
$$

Figure 32. Bipolar Operation Using the AD7801

Decoding Multiple AD 7801s in a System

The $\overline{\mathrm{CS}}$ pin on the AD 7801 can be used in applications to decode a number of DACs. In this application, all D ACs in the system receive the same input data, but only the $\overline{\mathrm{CS}}$ to one of the DACs will be active at any one time allowing access to one channel in the system. The 74H C 139 is used as a two-to-four line decoder to address any of the DAC s in the system. To prevent timing errors from occurring, the E nable input on the 74H C 139 should be brought to its inactive state while the C oded Address inputs are changing state. Figure 33 shows a diagram of a typical setup for decoding multiple AD 7801 devices in a system. The built-in power-on reset circuit on the AD 7801 ensures that the outputs of all DACs in the system power up with zero volts on their outputs.

Figure 33. Decoding Multiple AD7801s

AD7801

AD 7801 as a Digitally Programmable Indicator

A digitally programmable upper limit detector using the DAC is shown in Figure 34. The upper limit for the test is loaded to the DAC, which in turn sets the limit for the CM P04. If a signal at the $V_{\text {IN }}$ input is not below the programmed value, an LED will indicate the F ail condition.

Figure 34. Digitally Programmable Indicator

Programmable C urrent Source

Figure 35 shows the AD 7801 used as the control element of a programmable current source. In this circuit the full-scale current is set to 1 mA . The output voltage from the DAC is applied across the current setting resistor of $4.7 \mathrm{k} \Omega$ in series with the full-scale setting resistor of 470Ω. Suitable transistors to place in the feedback loop of the amplifier include the BC 107 and the 2N 3904, which enable the current source to operate from a minimum $\mathrm{V}_{\text {SOURCE }}$ of 6 V . The operating range is determined by the operating characteristics of the transistor. Suitable amplifiers include the AD 820 and the OP295, both of which have rail-to-rail operation on their outputs. T he current for any digital input code can be calculated as follows:

$$
I=\frac{\left(2 V_{\text {REF }} D\right)}{(256(5 \mathrm{k} \Omega))}
$$

Figure 35. Programmable Current Source

C oarse and Fine Adjustment using two AD7801s

T he two DAC s can be paired together to form a coarse and fine adjustment function for a setpoint as shown in Figure 36. In this circuit, the first DAC is used to provide the coarse adjustment and the second DAC is used to provide the fine adjustment. Varying the ratio of R1 and R2 will vary the relative effect of the coarse and fine tune elements in the circuit. F or the resistor values shown, the second DAC has a resolution of $148 \mu \mathrm{~V}$ giving a fine tune range of 38 mV (approximately 2 LSB) for operation with a V_{DD} of 5 V and a reference of 2.5 V . The amplifier shown allows a rail-to-rail output voltage to be achieved on the output. A typical application for the circuit would be in a setpoint controller.

Figure 36. Coarse and Fine Adjustment

Power Supply Bypassing and Grounding

In any circuit where accuracy is important, careful consideration of the power supply and ground return layout helps to ensure the rated performance. The printed circuit board on which the AD 7801 is mounted should be designed so that the analog and digital sections are separated and confined to certain areas of the board. If the AD 7801 is in a system where multiple devices require an AGND to DGND connection, the connection should be made at one point only, a star ground point which should be established as closely as possible to the AD 7801. The AD 7801 should have ample supply bypassing of $10 \mu \mathrm{~F}$ in parallel with $0.1 \mu \mathrm{~F}$ located as close to the package as possible, ideally right up against the device. The $10 \mu \mathrm{~F}$ capacitors are the tantalum bead type. The $0.1 \mu \mathrm{~F}$ capacitors should have low Effective Series Resistance (ESR) and Effective Series Inductance (ESI), such as the common ceramic types, which provide a low impedance path to ground at high frequencies to handle transient currents due to internal logic switching.

The power supply lines of the AD 7801 should use as large a trace as possible to provide low impedance paths and reduce the effects of glitches on the supply line. F ast switching signals like clocks should be shielded with digital ground to avoid radiating noise to other parts of the board and should never be run near reference inputs. Avoid crossover of digital and analog signals. Traces on opposite sides of the board should run at right angles to each other. This reduces the effect of feedthrough through the board. A microstrip technique is by far the best, but not always possible with a double-sided board. In this technique, the component side of the board is dedicated to the ground plane while signal traces are placed on the solder side.

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).

20-Lead Wide Body SOIC

(R-20)

20-Lead TSSOP
(RU-20)

FEATURES

- Very Low Noise
- Excellent Input Offset Voltage

5nV/ $\sqrt{\mathrm{Hz}}$ @ 1 kHz Max

- Low Offset Voltage Drift $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max
- Very High Gain . 1000V/mV Min
- Outstanding CMR

110dB Min

- Slew Rate . 2V/ $/$ s Typ
- Gain-Bandwidth Product 6MHz Typ
- Industry Standard Quad Pinouts
- Available in Die Form

ORDERING INFORMATION ${ }^{\dagger}$

$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{OS}}^{\mathrm{MAX}}(\mu \mathrm{~V}) \end{gathered}$	PACKAGE			OPERATING TEMPERATURE RANGE
	CERDIP 14-PIN	PLASTIC	LCC*	
400	-	-	OP470ARC/883	MIL
400	OP470AY*	-	OP470ATC/883	MIL
400	OP470EY	-	-	IND
800	OP470FY	-	-	IND
1000	-	OP470GP	-	XIND
1000	-	OP470GS ${ }^{\text {t }}$	-	XIND

* For devices processed in total compliance to MIL-STD-883, add/883 after part number. Consult factory for 883 data sheet.
\dagger Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-can packages.
\# For availability and burn-in information on SO and PLCC packages, contact your local sales office.

GENERAL DESCRIPTION

The OP-470 is a high-performance monolithic quad operational amplifier with exceptionally low voltage noise, $5 n \mathrm{~V} / \sqrt{\mathrm{Hz}}$ at 1 kHz Max, offering comparable performance to PMI's industry standard OP-27.
The OP-470 features an input offset voltage below 0.4 mV , excellent for a quad op amp, and an offset drift under $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, guaranteed over the full military temperature range. Openloop gain of the OP-470 is over $1,000,000$ into a $10 \mathrm{k} \Omega$ load
insuring excellent gain accuracy and linearity, even in highgain applications. Input bias current is under 25 nA which reduces errors due to signal source resistance. The OP-470's CMR of over 110 dB and PSRR of less than $1.8 \mu \mathrm{~V} / \mathrm{V}$ significantly reduce errors due to ground noise and power supply fluctuations. Power consumption of the quad OP-470 is half that of four OP-27s, a significant advantage for power con-

PIN CONNECTIONS

SIMPLIFIED SCHEMATIC

OP-470

scious applications. The OP-470 is unity-gain stable with a gain-bandwidth product of 6 MHz and a slew rate of $2 \mathrm{~V} / \mu \mathrm{s}$.

The OP-470 offers excellent amplifier matching which is important for applications such as multiple gain blocks, lownoise instrumentation amplifiers, quad buffers, and low-noise active filters.
The OP-470 conforms to the industry standard 14-pin DIP pinout. It is pin compatible with the OP-11, LM148/149, HA4741, HA5104, and RM4156 quad op amps and can be used to upgrade systems using these devices.

For higher speed applications the OP-471, with a slew rate of $8 \mathrm{~V} / \mu \mathrm{s}$, is recommended.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage .. $\pm 18 \mathrm{~V}$
Differential Input Voltage (Note 2) $\pm 1.0 \mathrm{~V}$
Differential Input Current (Note 2) $\pm 25 \mathrm{~mA}$
Input Voltage .. Supply Voltage
Output Short-Circuit Duration Continuous Storage Temperature Range
P, TC, Y-Package \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Lead Temperature Range (Soldering, 60 sec) $\qquad$$300^{\circ} \mathrm{C}$ Junction Temperature (T_{i}) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature Range

OP-470A	$5^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
OP-470E, OP-470F	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
OP-470G	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

PACKAGE TYPE	$\theta_{\text {ja }}$ (Note 3)	$\Theta_{j c}$	UNITS
14-Pin Hermetic DIP (Y)	94	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin Plastic DIP (P)	76	33	${ }^{\circ} \mathrm{C} / \mathrm{W}$
20-Contact LCC (RC)	78	30	${ }^{\circ} \mathrm{C} / \mathrm{W}$
28-Contact LCC (TC)	70	28	${ }^{\circ} \mathrm{C} / \mathrm{N}$
16-Pin SOL (S)	88	23	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES

1. Absolute maximum ratings apply to both DICE and packaged parts, uniess otherwise noted.
2. The OP-470's inputs are protected by back-to-back diodes. Current limiting resistors are not used in order to achieve low noise performance. If differential voltage exceeds $\pm 1.0 \mathrm{~V}$, the input current should be limited to $\pm 25 \mathrm{~mA}$.
3. $\Theta_{j A}$ is specified for worst case mounting conditions, i.e., $\Theta_{i A}$ is specified for device in socket for TO, CerDIP, P-DIP, and LCC packages; $\Theta_{j A}$ is specified for device soldered to printed circuit board for SO and PLCC packages.

ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	OP-470A/E			OP-470F			OP-470G			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$V_{O S}$		-	0.1	0.4	-	0.2	0.8	-	0.4	1.0	mV
Input Offset Current	Ios	$V_{C M}=0 \mathrm{~V}$	-	3	10	-	6	20	-	12	30	nA
Input Bias Current	I_{B}	$V_{C M}=0 \mathrm{~V}$	-	6	25	-	15	50	-	25	60	nA
Input Noise Voltage	$e_{n p-p}$	0.1 Hz to 10 Hz (Note 1)	-	80	200	-	80	200	-	80	200	$n V_{p-p}$
Input Noise Voltage Density	e_{n}	$\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}$	-	3.8	6.5	-	3.8	6.5	-	3.8	6.5	
		$\mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz}$	-	3.3	5.5	-	3.3	5.5	-	3.3	5.5	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}$ (Note 2)	-	3.2	5.0	-	3.2	5.0	-	3.2	5.0	
Input Noise Current Density	i_{n}	$\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}$	-	1.7	-	-	1.7	-	-	1.7	-	
		$\mathrm{f}_{0}-100 \mathrm{~Hz}$	-	0.7	-	-	0.7	-	-	0.7	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}$	-	0.4	-	-	0.4	-	-	0.4	-	
Large-Signal Voltage Gain	Avo	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$										
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	1000	2300	-	800	1700	-	800	1700	-	V / mv
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$,	500	1200	-	400	900	-	400	900	-	
Input Voltage Range	IVR	(Note 3)	± 11	± 12	-	± 11	± 12	-	$=11$	± 12	-	v
Output Voltage Swing	V_{0}	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	± 12	± 13	-	± 12	± 13	-	± 12	± 13	-	v
Common-Mode Rejection CMR		$\mathrm{V}_{\mathrm{CM}}= \pm 11 \mathrm{~V}$	110	125	-	100	120	-	100	120	-	dB
Power Supply Rejection Ratio	PSRR	$V_{S}= \pm 4.5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V}$	-	0.56	1.8	-	1.0	5.6	-	1.0	5.6	$\mu \mathrm{V} / \mathrm{V}$
Slew Rate	SR		1.4	2	-	1.4	2	-	1.4	2	-	$\mathrm{V} / \mu \mathrm{S}$

ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. (Continued)

PARAMETER	SYMBOL	CONDITIONS	OP-470A/E			OP-470F			OP-470G			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Supply Current (All Amplifiers)	$\mathrm{I}_{\text {SY }}$	No Load	-	9	11	-	9	11	-	9	11	mA
Gain Bandwidth Product	GBW	$A_{V}=+10$	-	6	-	-	6	-	-	6	-	MHz
Channel Separation	CS	$\begin{aligned} & V_{\mathrm{O}}=20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ & \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \text { (Note 1) } \end{aligned}$	125	155	-	125	155	-	125	155	-	dB
Input Capacitance	$\mathrm{C}_{\text {IN }}$		-	2	-	-	2	-	-	2	-	pF
Input Resistance Differential-Mode	$\mathrm{R}_{\text {/ }}$		-	0.4	-	-	0.4	-	-	0.4	-	MS]
Input Resistance Common-Mode	$\mathrm{R}_{\text {/ }} \mathrm{NCM}$		-	11	-	-	11	-	-	11	-	$\mathrm{G} \Omega$
Settiong Time	t_{s}	$\begin{aligned} & A_{V}=+1 \\ & \text { to } 0.1 \% \\ & \text { to } 0.01 \% \end{aligned}$	-	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	-	-	5.5 6.0	-	-	5.5 6.0	-	$\mu \mathrm{S}$

NOTES:

1. Guaranteed but not 100% tested.
2. Sample tested.
3. Guaranteed by CMR test.

ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ for $\mathrm{OP}-470 \mathrm{~A}$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	OP-470A			UNITS
			MIN	TYP	MAX	
Input Offset Voltage	$V_{O S}$		-	0.14	0.6	mV
Average Input Offset Voltage Drift	$\mathrm{TCV}_{\text {OS }}$		-	0.4	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	Ios	$V_{C M}=0 \mathrm{~V}$	-	5	20	nA
Input Bias Current	I_{B}	$V_{C M}=O V$	-	15	50	nA
Large-Signal Voltage Gain	Avo	$\begin{gathered} V_{O}= \pm 10 \mathrm{~V} \\ R_{L}=10 \mathrm{k} \Omega \\ R_{L}=2 \mathrm{k} \Omega \end{gathered}$	750 400		-	V / mV
Input Voltage Range	IVR	(Note 1)	± 11	± 12	-	V
Output Voltage Swing	V_{0}	$R_{L} \geq 2 k \Omega$	± 12	± 13	-	V
Common-Mode Rejection	CMR	$V_{\text {CM }}= \pm 11 \mathrm{~V}$	100	120	-	dB
Power Supply Rejection Ratio	PSRR	$V_{S}= \pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	-	1.0	5.6	$\mu \mathrm{V} / \mathrm{V}$
Supply Current (All Amplifiers)	$\mathrm{I}_{\text {SY }}$	No Load	-	9.2	11	mA
NOTE: 1. Guaranteed by CMR						

OP-470
ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V},-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for OP- $470 \mathrm{E} / \mathrm{F},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for OP-470G, unless otherwise noted.

			OP-470E			OP-470F			OP-470G			UNITS
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	Max	MIN	TYP	MAX	
Input Offset Voltage	V_{OS}		-	0.12	0.5	-	0.24	1.0	-	0.5	1.5	mV
Average Input Offset Voltage Drift	TCV ${ }_{\text {OS }}$		-	0.4	2	-	0.6	4	-	2	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	Ios	$V_{C M}=O V$	-	4	20	-	7	40	-	20	50	nA
Input Bias Current	${ }^{\text {B }}$	$V_{C M}=0 \mathrm{~V}$	-	11	50	-	20	70	-	40	75	nA
Large-Signal Voltage Gain	Avo	$\begin{gathered} V_{O}= \pm 10 \mathrm{~V} \\ R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ R_{\mathrm{L}}=2 \mathrm{k} \Omega \end{gathered}$	$\begin{aligned} & 800 \\ & 400 \end{aligned}$	$\begin{array}{r} 1800 \\ 900 \end{array}$	-		1400 700	-		1500 800	-	V / mV
Input Voltage Range	IVR	(Note 1)	± 11	± 12	-	± 11	± 12	-	± 11	± 12	-	V
Output Voltage Swing	V_{0}	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	± 12	± 13	-	± 12	± 13	-	± 12	± 13	-	V
Common-Mode Rejection	CMR	$\mathrm{V}_{\mathrm{CM}}= \pm 11 \mathrm{~V}$	100	120	-	90	115	-	90	110	-	dB
Power Supply Rejection Ratio	PSRR	$\mathrm{V}_{S}- \pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	-	0.7	5.6	-	1.8	10	-	1.8	10	$\mu \mathrm{V} / \mathrm{V}$
Supply Current (All Amplifiers)	${ }^{\text {SY }}$	No Load	-	9.2	11	-	9.2	11	-	9.3	11	mA

NOTE:

1. Guaranteed by CMR test.

DICE CHARACTERISTICS

1. OUT A
2. -IN A
3. + IN A
4. $\mathbf{V}+$
5. + IN B
6. -IN B
7. OUT B
8. OUT C
9. -IN C
10. +IN C
11. $\mathrm{V}-$
12. +IND
13. -IN D
14. OUT D

DIE SIZE 0.163×0.106 inch, $17,278 \mathrm{sq}$. mils ($4.14 \times 2.69 \mathrm{~mm}, 11.14 \mathrm{sq} . \mathrm{mm}$)

WAFER TEST LIMITS at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	OP-470GBC LIMIT	UNITS
Input Offset Voltage	$V_{\text {OS }}$		0.8	mV MAX
Input Offset Current	los	$V_{C M}=O V$	20	nA MAX
Input Bias Current	I_{B}	$V_{C M}=O V$	50	nA MAX
Large-Signal Voltage Gain	$A_{\text {Vo }}$	$\begin{gathered} V_{O}= \pm 10 \mathrm{~V} \\ R_{L}=10 \mathrm{k} \Omega \\ R_{L}=2 \mathrm{k} \Omega \end{gathered}$	$\begin{aligned} & 800 \\ & 400 \end{aligned}$	$\mathrm{V} / \mathrm{mV} \mathrm{M} \mathrm{N}$
Input Voltage Range	IVR	(Note 1)	± 11	$V \mathrm{MiN}$
Output Voltage Swing	Vo	$R_{L} \geq 2 k \Omega$	± 12	$V \mathrm{M} \mid \mathrm{N}$
Common Mode Rejection	CMR	$\mathrm{V}_{\mathrm{CM}}= \pm 11 \mathrm{~V}$	100	dB M\|N
Power Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	5.6	$\mu \mathrm{V} / \mathrm{V}$ MAX
Slew Rate	SR		1.4	$\mathrm{V} / \mu \mathrm{s} \mathrm{MIN}$
Supply Current (All Amplifiers)	$\mathrm{I}_{3 Y}$	No Load	11	mA MAX

NOTE:

1. Guaranteed by CMR test.

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

TYPICAL PERFORMANCE CHARACTERISTICS

TOTAL SUPPLY CURRENT vs TEMPERATURE

OPEN-LOOP GAIN vs FREQUENCY

-LOOP GAIN
vs FREQUENCY

GAIN-BANDWIDTH PRODUCT, PHASE MARGIN vs TEMPERATURE

TOTAL HARMONIC DISTORTION vs FREQUENCY

MAXIMUM OUTPUT
VOLTAGE vs LOAD RESISTANCE

SLEW RATE vs TEMPERATURE

LARGE-SIGNAL TRANSIENT RESPONSE

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
$V_{S}= \pm 15 \mathrm{~V}$

SMALL-SIGNAL OVERSHOOT vs CAPACITIVE LOAD

CHANNEL SEPARATION vs FREQUENCY

SMALL-SIGNAL
TRANSIENT RESPONSE

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
$\mathrm{v}_{\mathrm{s}}= \pm 15 \mathrm{~V}$

CHANNEL SEPARATION TEST CIRCUIT

BURN-IN CIRCUIT

APPLICATIONS INFORMATION

VOLTAGE AND CURRENT NOISE

The OP-470 is a very low-noise quad op amp, exhibiting a typical voltage noise of only $3.2 \mathrm{nV} / \sqrt{\mathrm{Hz}} @ 1 \mathrm{kHz}$. The exceptionally low noise characteristics of the OP-470 is in part achieved by operating the input transistors at high collector currents since the voltage noise is inversely proportional to the square root of the collector current. Current noise, however, is directly proportional to the square root of the collector current. As a result, the outstanding voltage noise performance of the OP-470 is gained at the expense of current noise performance, which is typical for low noise amplifiers.
To obtain the best noise performance in a circuit it is vital to understand the relationship between voltage noise (e_{n}), current noise (i_{n}), and resistor noise (e_{t}).

TOTAL NOISE AND SOURCE RESISTANCE

The total noise of an op amp can be calulated by:

$$
E_{n}=\sqrt{\left(e_{n}\right)^{2}+\left(i_{n} R_{S}\right)^{2}+\left(e_{t}\right)^{2}}
$$

where:
$E_{\mathrm{n}}=$ total input referred noise
$e_{n}=o p$ amp voltage noise
$i_{n}=o p$ amp current noise
$e_{t}=$ source resistance thermal noise
$\mathrm{R}_{\mathrm{S}}=$ source resistance
The total noise is referred to the input and at the output would be amplified by the circuit gain.
Figure 1 shows the relationship between total noise at 1 kHz and source resistance. For $R_{S}<1 \mathrm{k} \Omega$ the total noise is dominated by the voltage noise of the OP-470. As R_{S} rises above

FIGURE 1: Total Noise vs Source Resistance (Including Resistor Noise) at 1 kHz

FIGURE 2: Total Noise vs Source Resistance (Including Resistor Noise) at 10 Hz

OP-470

$1 \mathrm{k} \Omega$, total noise increases and is dominated by resistor noise rather than by voltage or current noise of the OP-470. When R_{S} exceeds $20 \mathrm{k} \Omega$, current noise of the OP-470 becomes the major contributor to total noise.
Figure 2 also shows the relationship between total noise and source resistance, but at 10 Hz . Total noise increases more quickly than shown in Figure 1 because current noise is inversely proportional to the square root of frequency. In Figure 2, current noise of the OP-470 dominates the total noise when $\mathrm{R}_{\mathrm{S}}>5 \mathrm{k} \Omega$.
From Figures 1 and 2 it can be seen that to reduce total noise, source resistance must be kept to a minimum. In applications with a high source resistance, the OP-400, with lower current noise than the OP-470, will provide lower total noise.

Figure 3 shows peak-to-peak noise versus source resistance over the 0.1 Hz to 10 Hz range. Once again, at low values of R_{S},

FIGURE 3: Peak-To-Peak Noise (0.1 Hz To 10 Hz) vs Source Resistance (Includes Resistor Noise)

the voltage noise of the OP-470 is the major contributor to peak-to-peak noise with current noise the major contributor as R_{S} increases. The crossover point between the OP-470 and the OP-400 for peak-to-peak noise is at $R_{S}=17 \mathrm{k} \Omega$.
The OP-471 is a higher speed version of the OP-470, with a slew rate of $8 \mathrm{~V} / \mu \mathrm{s}$. Noise of the OP-471 is only slightly higher than the OP-470. Like the OP-470, the OP-471 is unity-gain stable.
For reference, typical source resistances of some signal sources are listed in Table I.

TABLE I

DEVICE	SOURCE IMPEDANCE	COMMENTS
Strain gauge	$<500 \Omega$	Typically used in low-frequency applications.
Magnetic tapehead	$<1500 \Omega$	Low I self-magnetization problems when direct coupling is used. OP-470 I_{B} can be neglected.
Magnetic phonograph cartridges	$<1500 \Omega$	Similar need for low in direct coupled applications. OP-470 will not introduce any self-magnetization problem.
Linear variable differential transformer	$<1500 \Omega$	Used in rugged servo-feedback applications. Bandwidth of interest is 400 Hz to 5 kHz.

For further information regarding noise calculations, see "Minimization of Noise in Op-Amp Applications," Application Note AN-15.

NOISE MEASUREMENTS -

PEAK-TO-PEAK VOLTAGE NOISE

The circuit of Figure 4 is a test setup for measuring peak-topeak voltage noise. To measure the 200 nV peak-to-peak

FIGURE 4: Peak-To-Peak Voltage Noise Test Circuit (0.1 Hz To 10 Hz)

noise specitication of the OP-470 in the 0.1 Hz to 10 Hz range, the following precautions must be observed:

1. The device has to be warmed-up for at least five minutes. As shown in the warm-up drift curve, the offset voltage typically changes $5 \mu \mathrm{~V}$ due to increasing chip temperature after power-up. In the 10 -second measurement interval, these temperature-induced effects can exceed tens-of-nanovolts.
2. For similar reasons, the device has to be well-shielded from air currents. Shielding also minimizes thermocouple effects.
3. Sudden motion in the vicinity of the device can also "feedthrough" to increase the observed noise.

FIGURE 5: 0.1 Hz To 10 Hz Peak-To-Peak Voltage Noise Test Circuit Frequency Response

4. The test time to measure $0.1 \mathrm{~Hz}-\mathrm{to}-10 \mathrm{~Hz}$ noise should not exceed 10 seconds. As shown in the noise-tester fre-quency-response curve of Figure 5, the 0.1 Hz corner is defined by only one pole. The test time of 10 seconds acts as an additional pole to eliminate noise contribution from the frequency band below 0.1 Hz .
5. A noise-voltage-density test is recommended when measuring noise on a large number of units. A 10 Hz noise-voltage-density measurement will correlate well with a $0.1 \mathrm{~Hz}-\mathrm{to}-10 \mathrm{~Hz}$ peak-to-peak noise reading, since both results are determined by the white noise and the location of the $1 / \mathrm{f}$ corner frequency.
6. Power should be supplied to the test circuit by well bypassed low-noise supplies, e.g. batteries. These will minimize output noise introduced via the amplifier supply pins.

NOISE MEASUREMENT - NOISE VOLTAGE DENSITY

The circuit of Figure 6 shows a quick and reliable method of measuring the noise voltage density of quad op amps. Each individual amplifier is series-connected and is in unity-gain, save the final amplifier which is in a noninverting gain of 101. Since the ac noise voltages of each amplifier are uncorrelated, they add in rms fashion to yield:

$$
e_{\mathrm{OUT}}=101\left(\sqrt{e_{\mathrm{nA}}{ }^{2}+e_{\mathrm{nB}}{ }^{2}+e_{\mathrm{nC}}{ }^{2}+e_{\mathrm{nD}}}{ }^{2}\right)
$$

The OP-470 is a monolithic device with four identical amplifiers. The noise voltage density of each individual amplifier will match, giving

$$
e_{\text {OUT }}=101\left(\sqrt{4 e_{n}^{2}}\right)=101\left(2 e_{n}\right)
$$

FIGURE 6: Noise Voltage Density Test Circuit

FIGURE 7: Current Noise Density Test Circuit

NOISE MEASUREMENT - CURRENT NOISE DENSITY
The test circuit shown in Figure 7 can be used to measure current noise density. The formula relating the voltage output to current noise density is:

$$
i_{n}=\frac{\sqrt{\left(\frac{e_{\mathrm{nOUT}}}{\mathrm{G}}\right)^{2}-(40 \mathrm{nV} / \sqrt{\mathrm{Hz}})^{2}}}{\mathrm{R}_{\mathrm{S}}}
$$

where:

$$
\begin{aligned}
& G=\text { gain of } 10000 \\
& R_{S}=100 \mathrm{k} \Omega \text { source resistance }
\end{aligned}
$$

CAPACITIVE LOAD DRIVING AND POWER SUPPLY CONSIDERATIONS

The OP-470 is unity-gain stable and is capable of driving large capacitive loads without oscillating. Nonetheless, good supply bypassing is highly recommended. Proper supply bypassing reduces problems caused by supply line noise and improves the capacitive load driving capability of the OP-470.

In the standard feedback amplifier, the op amp's output resistance combines with the load capacitance to form a lowpass filter that adds phase shift in the feedback network and reduces stability. A simple circuit to eliminate this effect is shown in Figure 8. The added components, C1 and R3, decouple the amplifier from the load capacitance and provide additional stability. The values of C1 and R3 shown in Figure 8 are for a load capacitance of up to 1000 pF when used with the OP-470.
In applications where the OP-470's inverting or noninverting inputs are driven by a low source impedance (under 100 Ω) or connected to ground, if $\mathrm{V}+$ is applied before V -, or when V is disconnected, excessive parasitic currents will flow. Most

FIGURE 8: Driving Large Capacitive Loads

FIGURE 9: Pulsed Operation

applications use dual tracking supplies and with the device supply pins properly bypassed, power-up wili not present a problem. A source resistance of at least 100Ω in series with all inputs (Figure 8) will limit the parasitic currents to a safe level if V - is disconnected. It should be noted that any source resistance, even 100Ω, adds noise to the circuit. Where noise is required to be kept at a minimum, a germanium or Schottky diode can be used to clamp the V - pin and eliminate the parasitic current flow instead of using series limiting resistors. For most applications, only one diode clamp is required per board or system.

UNITY-GAIN BUFFER APPLICATIONS

When $R_{f} \leq 100 \Omega$ and the input is driven with a fast, largesignal pulse ($>1 \mathrm{~V}$), the output waveform will look as shown in Figure 9.
During the fast feedthrough-like portion of the output, the input protection diodes effectively short the output to the input, and a current, limited only by the output short-circuit protection, will be drawn by the signal generator. With $R_{f} \geq$ 500Ω, the output is capable of handling the current requirements ($\mathrm{I}_{\mathrm{L}} \leq 20 \mathrm{~mA}$ at 10 V); the amplifier will stay in its active mode and a smooth transition will occur.

When $R_{f}>3 k \Omega$, a pole created by R_{f} and the amplifier's input capacitance (2 pF) creates additional phase shift and reduces phase margin. A small capacitor (20 to 50 pF) in parallel with R_{f} helps eliminate this problem.

APPLICATIONS

LOW NOISE AMPLIFIER

A simple method of reducing amplifier noise by paralleling amplifiers is shown in Figure 10. Amplifier noise, depicted in Figure 11 , is around $2 n \mathrm{VV} / \sqrt{\mathrm{Hz}} @ 1 \mathrm{kHz}$ (R.T.I.). Gain for each paralleled amplifier and the entire circuit is 1000 . The 200Ω resistors limit circulating currents and provide an effective output resistance of 50Ω. The amplifier is stable with a $10 n \mathrm{~F}$ capacitive load and can supply up to 30 mA of output drive.

DIGITAL PANNING CONTROL

Figure 12 uses a DAC-8408, a quad 8-bit DAC, to pan a signal between two channels. The complementary DAC current outputs of two of the DAC-8408's four DACs drive current-tovoltage converters built from a single quad OP-470. The amplifiers have complementary outputs with the amplitudes dependent upon the digital code applied to the DAC. Figure 13 shows the complementary outputs for a 1 kHz input signal and digital ramp applied to the DAC data inputs. Distortion of the digital panning control is less than 0.01%.
Gain error due to the mismatching between the internal DAC ladder resistors and the current-to-voltage feedback resis-
tors is eliminated by using feedback resistors internal to the DAC. Of the four DACs available in the DAC-8408, only two, DACs A and C, actually pass a signal. DACs B and D are used to provide the additional feedback resistors needed in the circuit. If the $V_{R E F} B$ and $V_{\text {REF }} D$ inputs remain unconnected the currrent-to-voltage converters using $R_{F B} B$ and $R_{F B} D$ are unaffected by digital data reaching DACs B and D.

FIGURE 10: Low Noise Amplifier

FIGURE 11: Noise Density of Low Noise Amplifier, G = 1000

FIGURE 13: Digital Panning Control Output

SQUELCH AMPLIFIER

The circuit of Figure 14 is a simple squelch amplifier that uses a FET switch to cut off the output when the input signal falls below a preset limit.
The input signal is sampled by a peak detector with a time constant set by C1 and R6. When the output of the peak detector, V_{p}, falls below the threshold voltage, V_{TH}, set by R 8 , the comparator formed by op amp C switches from V - to $\mathrm{V}-\mathrm{t}$. This drives the gate of the N-channel FET high, turning it ON, reducing the gain of the inverting amplifier formed by op amp A to zero.

FIGURE 14: Squelch Amplifier

FIVE-BAND LOW NOISE STEREO GRAPHIC EQUALIZER
The graphic equalizer circuit shown in Figure 15 provides 15 dB of boost or cut over a 5 -band range. Signal-to-noise
ratio over a 20 kHz bandwidth is better than 100 dB referred to a 3 V rms input. Larger inductors can be replaced by active inductors but this reduces the signal-to-noise ratio.

FIGURE 15: 5-Band Low Noise Graphic Equalizer

+13 dBm LO, up to +9 dBm RF																								
MODEL NO.	$\begin{gathered} \text { FREQU } \\ \text { Mr } \\ \text { LO/RF } \\ f_{L}-f_{u} \end{gathered}$	NCY z IF	$\begin{aligned} & \mathrm{COI} \\ & \mathrm{Mid} \\ & \overline{\mathrm{x}} \end{aligned}$	$\begin{aligned} & \text { NVE } \\ & \text { I-Bar } \\ & \text { m } \\ & \sigma \end{aligned}$	RSION dB nd Max.	LOSS Total Range Max.				B Min.	ION Typ.	U Min.	Typ.	LO-II Min.		B Min.	ION Typ.		IP3@ center band Typ. (dBm)	$\begin{gathered} \mathbf{E} \\ \mathbf{f} \\ \mathbf{a} \\ \mathbf{c} \\ \mathbf{t} \\ \mathbf{o} \\ \mathbf{r} \end{gathered}$	CASE STYE	$\begin{aligned} & C \\ & 0 \\ & N \\ & N \\ & \mathbf{N} \\ & \mathbf{C} \\ & \mathbf{C} \\ & 1 \\ & \mathbf{O} \\ & \mathbf{N} \end{aligned}$	PCB Layout PL	$\begin{gathered} \text { PRICE } \\ \$ \\ \\ \text { Qty. } \\ (10-49) \end{gathered}$
- ADE-1M ${ }^{* *}$	2-500	DC-500	5.2	. 10	6.5	8.0	60	45	50	35	48	25	55	40	45	30	40	22	17	0.4	CD542	ht	052	5.95
- ADE-1M ${ }^{*}{ }^{* *}$	0.5-600	DC-600	5.2	. 10	6.9	8.0	63	50	53	32	43	20	56	40	44	25	30	20	17	0.4	CD636	ht	052	6.45
- ADE-10M ${ }^{\text {** }}$	800-1000	10-200	7.0	0.2	-	8.5			34(Typ.) 20 (Min.)				29(Typ.)) 20 (M	Min.)		26	1.3	CD636	ht	052	6.95
- ADE-12MH**	10-1200	DC-1200	6.3	. 10	8.0	8.5	62	45	45	32	40	26	68	40	42	27	30	20	22	0.9	CD542	ht	052	6.45
- ADE-25M ${ }^{* *}$	5-2500	5-1500	6.9	. 10	8.5	9.8		28	34	23	34	23	34	23	32	20	23	17	18	0.5	CD542	ht	052	6.95
- ADE-35MH**	5-3500	5-2500	6.9	. 10	9.3	10.5	47	28	33	23	38	18	34	23	28	18	23	17	18	0.5	CD542	ht	052	9.95
- ADE-42M ${ }^{* *}$	5-4200	5-3500	7.5	. 20	9.8	11.8		28	29	20	30	15		23	26	17	23	17	17	0.4	CD542	ht	052	14.95
MBA-15MH*	1400-2400	DC-600	5.5	0.1	-	8.5			28(Typ.) 16(16(Typ.)) 8(M			18	0.5	SM2	Id	066	7.95
- MBA-25MH*	2000-3000	DC-500	6.5	0.1	-	8.6			36(Typ.) 18 (20(Typ.)) 7 (M			16	0.3	SM2	Id	066	7.95
NEWMCA1-24M ${ }^{*}$	300-2400	DC-700	6.1	0.1	8.9					20						14			13	0	D7885	Id	045	6.95
NEWMCA1-42M ${ }^{*}$	1000-4200	DC-1500	6.2	0.1	8.9					20						10			16	0.3	DZ885	Id	045	7.95
NEWMCA1-60MH*	1600-4400	DC-2000	6.9	0.1	8.5					25					17				15	0.2	DZ885	Id	045	8.95
	4400-6000	DC-2000	6.0	0.1	8.5											-			15	0.2				
- ALY-44M	2400-4400	DC-1400	7.5	. 20	-	8.9			30 (Typ.) 20	Min.)				20(Typ.)) 10 (M	Min.)		-		CB518	jy	085	18.95
- ALY-44MHW	1800-4900	DC-1400	7.5	. 20	-	9.2			30 (Typ.) 20 (Min.)				14(Typ.)) 8 (M			-		CB518	jy	085	19.95
JMS-1MH	2-500	DC-500	5.75	. 10	7.0	8.0	70	55	60	40	44	25	55	42	45	25	35	20	-		BH292	ht	052	9.45
JMS-2MH	20-1000	DC-1000	7.0	. 15	8.4	9.5	63	40	50	28	35	20	56	30	47	22	37	20	-		BH292	ht	052	10.45
JMS-5MH	5-1500	DC-1000	5.7	. 10	8.0	9.5	67	40	57	25	35	20	60	40	35	18	15	8	-		BH292	ht	052	11.95
- LRMS ${ }^{\text {a }}$ MHJ	2-500	DC-500	5.65	. 08	7.0	8.0	58	45	44	25	30	20	55	40	36	25	28	17	-		QQQ569	w	083	8.95
- LRMS2MH	5-1000	DC-1000	6.72	. 08	8.5	9.5	55	40	39	20	22	16	52	35	30	17	18	12	-		QQQ569	w	083	9.95
- LRMS-2UMH	10-1000	20-500	7.0 5.67	. 10	8.5	9.5	52	40	43	30	33	25	53	30	44	25	39	22	-		QQQ569	w	083	14.45
- LRMS5MH]	10-1500	DC-900	5.67	. 09	9.0	9.5	58	40	40	20	26	18	50	30	38	18	17	8	-		QQQ569	w	083	15.95

$E=[I P 3(d B m)-L O$ Power $(d B m)] / 10$

$$
\mathrm{L}=\text { low range }\left[\mathrm{f}_{\mathrm{L}} \text { to } 10 \mathrm{f}_{\mathrm{L}}\right]
$$

$$
\begin{aligned}
& \mathrm{M}=\text { mid range }\left[10 \mathrm{f}_{\mathrm{L}} \text { to } \mathrm{f}_{\mathrm{V}} / 2\right] \\
& \mathrm{m}=\text { mid band }\left[2 \mathrm{f}_{\mathrm{L}} \text { to } \mathrm{f}_{\mathrm{J}} / 2\right]
\end{aligned}
$$

$$
\mathrm{U}=\text { upper range }\left[\mathrm{f}_{\mathrm{U}} / 2 \text { to } \mathrm{f}_{\mathrm{U}}\right]
$$

NOTES:

$\bar{x} \quad$ Average of conversion loss at center of mid-band frequency $\left(f_{L}+f_{U} / 4\right)$
σ Standard deviation

- Aqueous washable. For non-aqueous requirements, LRMS units a vailable in case style QQQ130.
- Non-hermetic
$\dagger \quad$ Phase detection, positive polarity
$\ddagger \quad$ Conversion loss increases up to 6 dB higher as IF frequency decreases from 5 MHz to DC.
(1) Frequency Specified RMS-42MH $m=1000-2000 \mathrm{MHz}, \mathrm{L}=800-2100 \mathrm{MHz}$, $\mathrm{U}=2100-4200 \mathrm{MHz}$; TUF-2MHSM L=50-100 MHz M=100-500 MHz
* BLUE CEL ${ }^{\text {TM }}$ mixers protected by U.S. Patents 5,534,830 5,640,132 5,640,134 5,640,699
** Protected under U.S. Patent 6133525
** Prices for quantities 10-49
A. Environmental specifications and re-flow soldering information available in General Information Section.
B. Units are non-hermetic unless otherwise noted. For details on case dimensions \& finishes see "C ase Styles \& Outline Dra wings".
C. Prices and Specific ations subject to change without notice.

1. Absolute maximum power, voltage and curent ratings: 1a. RF power 200 mW ; 1b. Peak IF current, 40 mA
NSN GUIDE
MCLNO. NSN
ROK-186MH 5895-01-392-
2276
SRA-1MH
0113
TFM-3MH
7047
TFM-42MH
5895-01-391-
6093

+13 dBm LO, up to +9 dBm RF

	RREQUENCY MHz		CONVERSION LOSSdB				LO-RF ISOLATIONdB						LO-IF ISOLATION dB						IP3@ center band Typ. (dBm)	$E$$\mathbf{f}$$\mathbf{a}$$\mathbf{c}$$\mathbf{t}$$\mathbf{o}$$\mathbf{r}$	CASE STYE	CONNECTIO	$\begin{array}{\|c\|} \text { PCB } \\ \text { Lay- } \\ \text { out } \\ \text { PL- } \end{array}$	$\begin{gathered} \text { PRICE } \\ \$ \\ \\ \text { Qty. } \\ (10-49) \end{gathered}$
MODEL NO.	$\begin{gathered} \text { LO/RF } \\ f_{-}-f_{u} \end{gathered}$		Mid-Band Total Range $\overline{\mathbf{m}}$ $\boldsymbol{\sigma}$ Max. Max.					L Min.	$\stackrel{\text { M }}{\text { Typ. Min. }}$		$\begin{gathered} \text { U } \\ \text { Typ. Min. } \end{gathered}$			L Min.	M Typ. Min.		$\underset{\text { Typ. Min. }}{\text { U }}$							
RMS1MH	2-500	DC-500	5.65	. 08	7.0	8.0	58	45	44	25	30	20	55	40	36	25	28	17	26	1.3	71240	w	052	8.95
RMS2MH	5-1000	DC-1000	6.72	. 08	8.5	9.5	55	40	39	20	22	16	52	35	30	17	18	12	-		T100	w	052	9.95
RMS5MH	10-1500	DC-900	5.67	. 09	9.0	9.5	58	40	40	20	26	18	50	30	38	18	17	8	-		T1240	w	052	15.95
RMS25MH	5-2500	5-1500	7.0	. 20	8.5	9.8	54	28	32	23	32	20	34	23	32	25	28	17	17	0.4	T1240	w	052	9.95
NENRMS25MHW	5-2500	5-2200	7.0	0.1	8.5	9.8	54	28	32	23	32	20	34	23	32	25	28	17	17	0.4	T1240	w	052	7.95
JRMS 42 MH	800-4200	DC-800	5.3	. 20	9.0	10.8		25	-	-	28	17		10	-	-	15	7	-		T1240	w	052	24.95
SKY-53MHR	2800-5300	DC-500	5.7	. 20	-	9.5			(Typ.)	15(Mis				12 (T)	(тyp.) 8	8(Min			19	0.6	BJ 398	hp		17.95
SKY-60MH	2500-6000	DC-1500	6.2	. 20	-	9.5			(Typ.)	17(Mi					тур.) 8	8(Min			19	0.6	BJ 398	je		17.95
SYM-11MH	50-2000	50-1000	6.6	. 10	8.0	9.9	55	35	44	25	30	20	40	25	36	20	29	20	-		17167	x		15.95
SMM-25DMHW	40-2500	DC-1000才	6.6	. 10	8.0	9.0	47	32	37	27	35	22	38	28	35	25	38	20	26	1.3	T1T167	x		8.95**
STM-1020MH	1000-2000	DC-800	6.5	. 55	-	9.8			(Typ.)	20 (Min					Typ.) 1	10(Min			18	0.5	17166	19		9.95
SYM-8022MH	800-2200	DC-800	7.6	0.3	-	9.8			(Typ.)	18(Mi				20 (Ty	Typ.)	9(Min.			18	0.5	17167	Ip		11.95
TUF-1MHSM	2-600	DC-600	6.3	. 12	7.0	8.0	68	50	50	30	43	25	65	45	48	30	37	22	15	0.2	NNN150	z		8.25
(2) TUF-2MHSM	50-1000	DC-1000	6.0	. 25	7.5	9.0	58	40	47	30	37	25	55	35	47	20	32	18	-		NNN150	z		9.20
TUF-3MHSM	0.15-400	DC-400	5.0	. 33	7.0	8.0	60	50	46	30	35	25	60	40	42	25	35	20	-		NNN150	z		10.20
TUF-5MHSM	20-1500	DC-1000	7.0	. 25	8.5	9.0	50	40	41	30	35	25		25	28	18	20		-		NNN150	z		13.45
TUF-11AMHSM	1400-1900	40-500	7.4	. 20	8.6	8.6			(Typ.)	20 (Mi				24 (Ty	тур.)	15 (Min			-		NNN150	z		21.95
TUF-2500MHSM	400-2500	30-800	7.3	. 15	8.5	10.0		32 (Typ)	(Typ.)	24(Min				27 (Ty	(typ.)	17(Min			-		NNN150			21.95

$E=[I P 3(d B m)-L O$ Power(dBm) $] / 10$

$$
\mathrm{L}=\text { low range }\left[\mathrm{f}_{\mathrm{L}} \text { to } 10 \mathrm{f}_{\mathrm{L}}\right]
$$

$\mathrm{M}=$ mid range $\left[10 \mathrm{f}_{\mathrm{L}}\right.$ to $\left.\mathrm{f}_{\mathrm{U}} / 2\right]$
$\mathrm{m}=$ mid band [2f to $\mathrm{f}_{\mathrm{U}} / 2$]

$$
\mathrm{U}=\text { upper range }\left[\mathrm{f}_{\mathrm{U}} / 2 \text { to } \mathrm{f}_{\mathrm{U}}\right]
$$

pin a nd coaxial connections see case style outline drawings

PORT	w	X	z	hp	ht	je	jy	lc	Id	Ip	19
LO	1	2	4	5	6	1	1	10	10	3	3
RF	4	1	1	1	3	5	6	5	5	1	2
IF	5	3	2	7	2	7	10	3	3	2	1
GND EXT.	2,3,6	4,5,6	3	2,3,4,6,8	1,4,5	2,3,4,6,8	all others	1,4,7,8,9	1,2,4,6,7,8,9	4,5,6	4,5,6
ISOLATE	-	-	-	-	-	-	-	2,6	-	-	-
DEMO BOARD	TB-03	TB-12	-	TB-11	TB-03	TB-11	-	TB-117	$\begin{gathered} \text { TB-99 (MBA) } \\ \text { TB-144 (MCA1) } \end{gathered}$	-	-

At: http:// www.minicircuits.com

In Stock... Immediate Delivery For Custom Versions Of Standard Models
Consult O ur A pplications Dept.

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

