Haptic feedback in robotic teleoperation

Claudio Pacchierotti

CNRS Researcher at Irisa and Inria Rennes Bretagne Atlantique Équipe Lagadic

Short Bio

Education

Computer Engineering, special. in Robotics & Automation, University of Siena, Italy

2011: Laurea magistrale (bac+5)

2014: Dottorato di ricerca (doctorat)

"Cutaneous haptic feedback in robotic teleoperation" - <u>Advisor</u>: Prof. Prattichizzo

2013: **University of Padua**, Italy, visiting student (1 month)

Supervisor: Prof. G. Rosati

2013/2014: University of Twente, The Netherlands, visiting student (2)

months)

Supervisor: Prof. S. Misra

2014: University of Pennsylvania, USA, visiting student (7)

months)

Supervisor: Prof. K. J. Kuchenbecker

University of Twente, The Netherlands, visiting scientist (2) 2015:

Postdoctoral experience

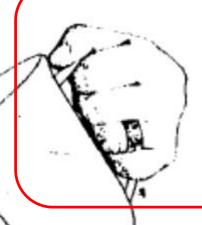
2015: Superevision of the state of th

2015-2016 Istituto Italiano di Tecnologia (IIT), Italy (17 months)

Haptic feedback in robotic teleoperation

Claudio Pacchierotti

CNRS Researcher at Irisa and Inria Rennes Bretagne Atlantique Équipe Lagadic



hap-tic ('hap-tik)

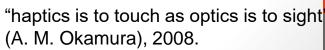
adj. of or relating to the sense of touch, touch-based. origins from the Greek wοιἁπτικός meaning "able to touch or grasp."

Kinesthesia

Location/configuration
Motion
Force
Compliance

Cutaneous

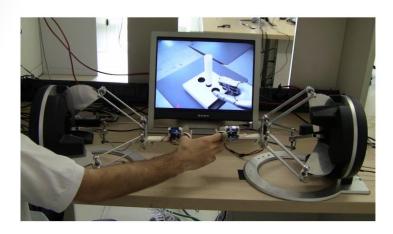
Temperatur

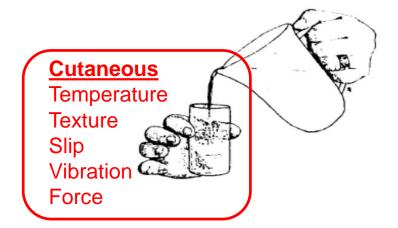

e

Texture

Slip

Vibration


Force



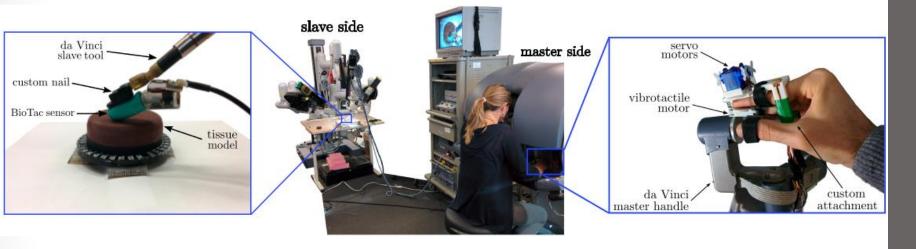
Teleoperation

Cutaneous haptic feedback in robotic teleoperation

Delivering ungrounded cutaneous cues to the operator's skin

- conveys rich information and
- does not affect the stability and safety of teleoperation systems.

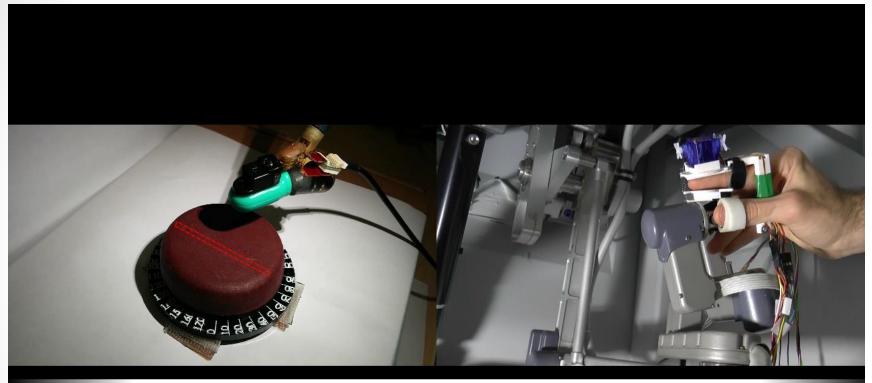
Palpation using the da Vinci Surgical System


main advantage of using cutaneous-only feedback techniques is a higher degree of safety. This is very promising for those scenarios where safety is a paramount and nonnegotiable requirement, such as in robot-assisted surgery.

For this reason, we present a novel force feedback system for the da Vinci Surgical System, capable of providing cutaneous feedback to the surgeon while guaranteeing the safety of the

Palpation using the da Vinci Surgical System

The haptic system is composed of a


- BioTac tactile sensor, in charge of registering forces and vibrations at the operating table, and
- (2) a cutaneous feedback device, in charge of applying contact forces and vibrations to the surgeon.

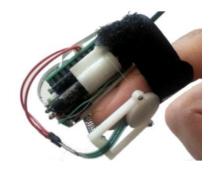
Cutaneous feedback device

Condition SV

The servo motors move the platform, and the vibrotactile motor outputs vibrations (played here as audio).

- C. Pacchierotti, D. Prattichizzo, K. J. Kuchenbecker. "Cutaneous feedback of fingertip deformation and vibration for robotic surgery." **IEEE Transactions on Biomedical Engineering**, In Press, 2015.
- C. Pacchierotti, K. J. Kuchenbecker, D. Prattichizzo. "A general approach to displaying sensed tactile cues with a fingertip haptic device." **IEEE Transactions on Haptics**, 8(4):397-409, 2015.
- C. Pacchierotti, D. Prattichizzo, K. J. Kuchenbecker. "A data-driven approach to remote tactile interaction: from a BioTac sensor to any fingertip cutaneous device." **Proc. EuroHaptics**, 2014.

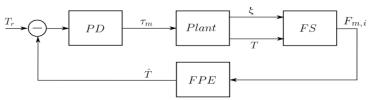
13


Wearable haptics

Wearable haptics systems

Ø

Challenges

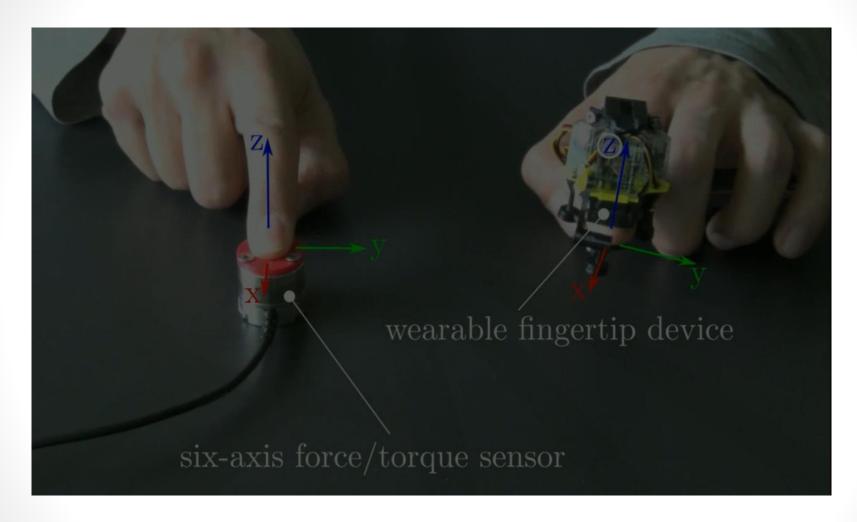


- Small, compact, and lightweight designs.
- Underactuation and undersensing.

$$\boldsymbol{\xi} = \mathbf{K}^{-1} \mathbf{w}_{\mathbf{p}},$$

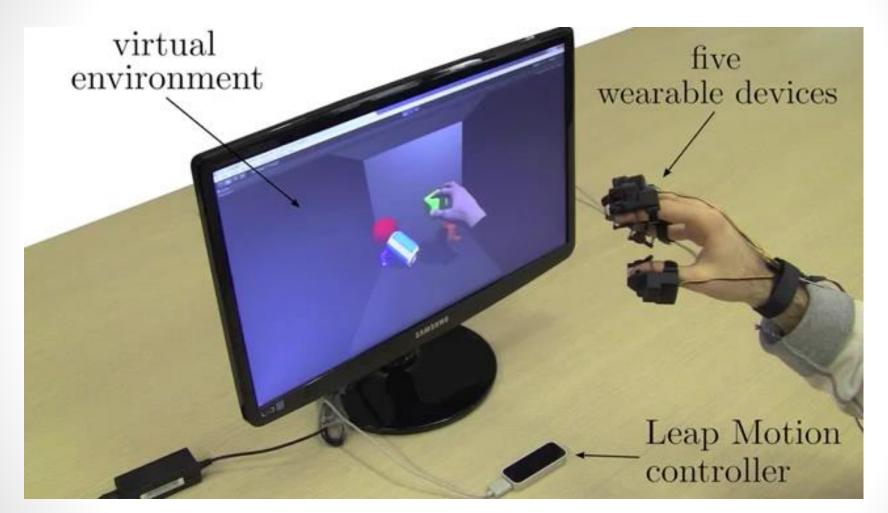
Force and position closed-loop contro

- Redistributable designs and APIs.
- Applications in medical robotics, rehabilitation, and gaming.


D. Prattichizzo, F. Chinello, C. Pacchierotti, M. Malvezzi. Towards wearability in fingertip haptics: a 3-DoF wearable device for cutaneous force feedback. **IEEE Transactions on Haptics**, 6(4):506-516, 2013.

F. Chinello, M. Malvezzi, C. Pacchierotti, D. Prattichizzo. "Design and development of a 3RRS wearable fingertip cutaneous device." **Proc. IEEE/ASME International Conference on Advanced Intelligent Mechatronic**, Busan, Republic of Korea, 2015.

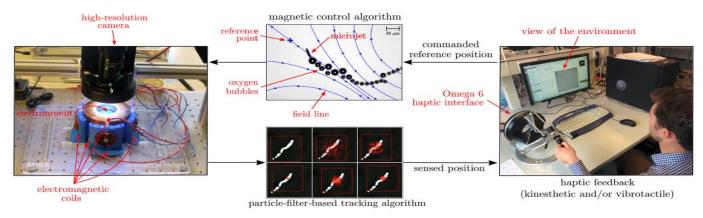
15


Demonstration

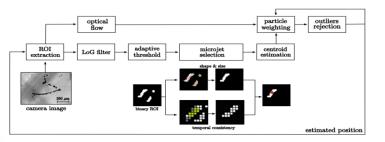
The wearable fingertip devices replicates the force pattern applied by the user on the sensor6

Application

Wearable devices provide the user with the compelling sensation of touching the virtual environment

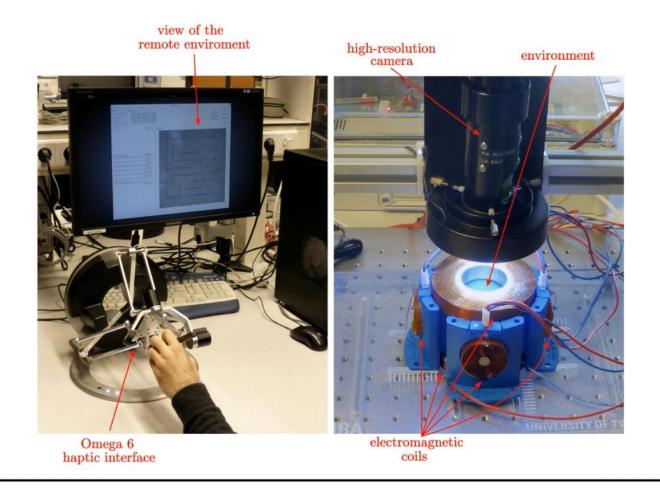


Microrobotics



Haptic feedback for microrobotics applications

- Biocompatible, biodegradable, soft robots.
- Tracking using particle-based approaches.
- Wireless magnetic control.


Color Space Median Adaptive S-channel Camera selection RGB Selection filtering image binary C metric $p_m(t)$ frame Removing Contour Discrete Fourier Kalman filter Normalization small blobs detection Transform

Applications in medical diagnosis.

Microrobotics

C. Pacchierotti, F. Ongaro, F. van den Brink, C. Yoon, D. Prattichizzo, D.H. Gracias, S. Misra. Steering and control of miniaturized untethered soft magnetic grippers with haptic assistance. **IEEE Transactions on Automation Science and Engineering**. In Press, 2017.

