

Développement de microcapteurs pour la caractérisation de matériaux complexes.

Florence Razan

Plan

- Problématique
- Les verrous scientifiques d'une stratégie de recherche innovante
- L'horizon : les nouveaux matériaux

Systèmes et Applications des Technologies <u>de</u> l'Information et de l'Energie UMR CNRS- 8029

Solides

Matière molle

Liquides

Matière molle

- Etats classiques de la matières : solide, liquide gaz
- Et des états intermédiaires comme les plasmas la matière molle....
- Objets constituants la matière molle

Molécules chimiques

Bactéries

Protéines

Assemblage d'objets = polymérisation

11/12/2015

SATIE Systèmes et Applications des Technologies de l'Information et de l'Energie UMR CNRS- 8029 Caractériser la matière molle

- Objets microscopiques différents
- Environnements variables
- Réactions de polymérisation multiples
- Propriétés macroscopiques hétérogènes

Nécessité de caractériser la matière molle

Matière molle : comment la caractériser expérimentalement ?

- Caractérisation morphologique : microscopie électronique MEB, microscopie champ proche AFM ou par rayonnements (rayon X, neutrons)
- Autre caractérisation possible : étude de la déformation et de l'écoulement d'un fluide sous l'effet d'une contrainte = rhéologie

- Rhéologie classique : forte amplitude, basse fréquence
- Rhéologie petite amplitude, haute fréquence adaptée aux matériaux viscoélastiques, entre liquide et solide
- Quel outil ?

Développement de microcapteurs électromécaniques pour caractériser la matière molle

• Mesure de l'impédance du quartz

Modélisation du quartz permet de remonter à G' et G'

Démarche pour le développement de capteurs innovants

- Modélisation de la matière molle
- Modélisation de l'interaction onde-matière
- Conception du capteur (design)
- Fabrication du capteur (microtechnologies)
- Caractérisation expérimentale de la propagation des ondes
- Développement de l'instrumentation
- Tests

Plan

• Problématique

- Les verrous scientifiques d'une stratégie de recherche innovante
- L'horizon

Verrous scientifiques pour des capteurs innovants

Modélisation de la matière molle
Miniaturisation
Micro-fabrication
Suivi temps réel

Systèmes et Applications des Technologies de l'Information et de l'Energie UMR CNRS- 8029 Modélisation de la matière molle

- Lien entre contrainte et déformation pour un solide : loi de Hooke $S_{ii} = G_{iikl} g_{ii}$
- Lien entre contrainte et déformation pour un **fluide** : loi de Newton η

$$S_{ij} = N_{ijkl} \frac{dt}{dt}$$
 $O = \int O$

 Lien entre contrainte et déformation pour un matériau viscoélastique isotrope

Modélisation de la matière molle

 Liens temporels entre contrainte et déformation : modèle de Maxwell (liquide) et Kelvin-Voigt (solides) (avec g module de relaxation)

 Modélisation du matériau dans le domaine temporel

Modélisation de la matière molle

 $\eta^*(\omega)$

 $\widetilde{\sigma}(t,\omega) = G^*(\omega)\widetilde{\gamma}(t,\omega)$

 Modélisation du matériau dans le domaine dans le domaine fréquentiel

 $\partial \widetilde{\gamma}(t,\omega)$

 ∂t

 $G^*(\omega)$

10

 $\widetilde{\gamma}(t,\omega)$

Possibilité de caractériser un matériau viscoélastique par la mesure de son élasticité G' et sa viscosité G'' : G* = G' + j G'',

SATIE Systèmes et Applications des Technologies de l'Information et de l'Energie UMR CNRS- 8029 Microtechnologies

• Process issus de la micro-électronique

Systèmes et Applications des Technologies *de l'Information et de l'Energie UMR CNRS- 8029*

Caractérisation de la propagation des ondes

 Scan de la surface du capteur avec un banc de vibrométrie laser

Thèse de Pierre Didier, Collaboration avec IGDR, MMDN, LBPA

Still Systèmes et Applications des Technologies de l'Information et de l'Energie UMR CNRS- 8029 Caractérisation de la propagation des ondes

20/11/2015

Collaboration avec IGDR (Rennes), MMDN (Monpellier), LBPA (Cachan)

de

en

le

de

Systèmes et Applications des Technologies de l'InfSultVI etempsieréel de lag

polymérisation de protéines

- Assemblages de protéines -> maladie d'Alzheimer
- Mesure en continu des propriétés viscoélastiques de protéines pour des solutions étalons dans un milieu simple

- Suivi de la polymérisation de la protéine tau dans un milieu simple
- Détermination de la conformation de la protéine dans un milieu simple

Systèmes et Applications des Technologies SATIE de l'Information et de l'Energie UMR CNRS- 8029

Suivi temps réel de la polymérisation de bactéries

19

Mesure des propriétés viscoélastiques des assemblages de colonies de bactéries

Compréhension de la formation des biofilms 20/11/2015

Plan

Problématique

• Les verrous scientifiques d'une stratégie de recherche innovante

• L'horizon

Collaboration avec

l'IPR de Rennes

le TIMC-IMAG de

Grenoble

Mise au point d'un outil de caractérisation de la polymérisation pour maitriser de l'état final du matériau

TIMAC de Grenoble

Modélisation et synthèse du matériau par

Matériaux implantables : Poly(acétate de

- Les propriétés mécaniques et viscoélastiques doivent être connues

Les tissus mous du vivant ont une

structure fibreuse anisotrope

SATIE

vinyle) PVA

Thèse d'Amaury Dalla Monta

Nouveaux matériaux

- Maitriser la synthèse des verres de chalcogénures
- Compréhension et modélisation des phénomènes de « photoexpansion géante » (augmentation très importante du volume sous irradiation)

Thèse Marion Specht Collaboration avec l'IPR

Intégration de capteurs dans les chalcogénures
20/11/2015
22

Nouveaux matériaux « intelligents »

- Intégration de capteurs dans des nouveaux matériaux
- Excitation et réception sans contact
- Suivi en ligne
 - Tout reste à faire

Systèmes et Applications des Technologies de l'Information et de l'Energie UMR CNRS- 8029 Pluridisciplinarité

Electrochimie

Thèse Damien Quinton Thèse Isabelle Mazerie Collaboration UTCBS et ISCR

Instrumentation

Collaboration avec équipes de SATIE

Mécanique, verres et élastomères

Thèse de Thierry Rey Thèse d'Amaury Dalla Monta Thèse de Marion Specht Collaboration avec l'IPR de Rennes Biologie

Thèse Pierre Didier, Collaboration avec IGDR, MMDN, LBPA

Métallurgie

Thèse CIFRE de Jennifer Dupuis Entreprise PONTOS Collaboration avec Laboratoire de Chimie-Métallurgie

Semi-conducteurs

Thèse Abdelghani Kherat Collaboration avec l'IETR

Régional, national, international **20/11/2015**

Je vous remercie pour votre attention