

Applications des supraconducteurs en génie électrique

Pr Dr Bruno Douine

Pr Dr Bruno Douine

Plan

- About GREEN lab
- Physic of Superconductors
- Superconducting material for Applications
- Characterization of HTS for applications
 - bulks
 - Tapes and coils
- Applications

GREEN lab Team

- Permanent Members
 - Pr J. Lévêque (team leader)
 - Pr B. Douine
 - Dr K. Berger
 - Dr T. Lubin
 - Dr S. Mezani
 - Dr. H. Menana
 - Dr. L. Belguerras
 - Pr Koblischka (associated)
 - Pr Trillaud (associated)

Academic collaborations

- KIT
- Saarland University (Dr M.R. Koblichka)
- Tokyo University of Science (Dr Pavan)
- University of Alger and Khémis-Miliana (Pr E.H. Ailam)
- National Autonomous University of Mexico (Pr F. Trillaud)
- Polytechnique Montréal, Quebec (Pr F. Sirois)
- University of Liège (Pr P. Vanderbemden)
- French labs:
 - LNCMI (X. Chaud) and Grenoble Electrical Engineering Laboratory (P.Tixador),
 - Institut Jean Lamour Nancy (S. Mangin and T. Hauet),
 - CRISMAT laboratory (J. Noudem and P. Bernstein)
 - GeePs Paris Saclay, (L. Queval)

Industrial collaborations

- Airbus Group and Safran Group (Design of SC machines for Aircrafts)
- SNCF (french railway compagny), (SC cables)
- Nexans France (IEC Standard of HTS tapes and cable)
- ASG Colombus (Italy)
- DGA linked to french army (Design and realization of superconducting machines)
- Naval Group French industrial group specialized in naval defense and energy (SC motor)

Main current projects

- IMOTHEP (Electric aircraft, WP5 Superconductivity)
- SUPERRAIL (SNCF, Nexans, SC cables)
- SCRYPT (Superconducting and CRYogenic Powertrain Technologies, SAFRAN, Airbus)
- PEPR (Programme et équipements prioritaires de recherche exploratoire) SupraFusion (50 M€)

Research topics and expertise

- Characterization of HTS material
- Modeling (FEM and analytical)
- Applications in electrical engineering

PHYSIC OF SUPERCONDUCTORSa) Superconductor features : **- no resistance for T<Tc**

-Resistivity of normal metal

Superconductors for T<Tc => no interactions => no resistance

- Meissner Effect

U

- Induced current in superconducting cylinder

- Superconducting permanent magnet

b) Critical surface

T <Tc B > Bc J < Jc

SUPERCONDUCTING MATERIAL FOR APPLICATIONS

Low Temperature Superconductors (LTS) (Tc<20K)

Material	T _C (K)	μ ₀ H _C (T) à 4,2K	J _C à 4,2K et 5T (kA/mm ²)
Nb ₃ Sn	18	22	15
NbTi	9	12	4

SUPERCONDUCTING MATERIAL FOR APPLICATIONS

Low Temperature Superconductors (LTS) To reduce AC losses, filaments of wire should be very thin (<10µm)

27/03/2024

 \cup

Etage 0

ETIRAGE

BILLETTE

ETIRAGE

TORSADAGE

ETIRAGE+TREFILAGE

PRODUIT FINI

Structure of LTS wire

UNIVERSITÉ DE LORRAINE

^{27/03/2024}

SUPERCONDUCTING MATERIAL FOR APPLICATIONS

"High" Temperature Superconductors (HTS) (Tc<I20K) since I986

=ceramic and anisotropic

High Temperature Superconductors

- They are the future for superconductors in Electrical Engineering applications
- Why?
 - High current-carrying capacitiy (≈ 500A/mm²)
 - Even at high magnetic flux density (> 40T)
 - Easy to cool down (liquid Nitrogen)
- Present limitations
 - Cost
 - Difficulty to produce high length for coated conductors

High Temperature Superconductors

(Tl ₄ Pb)Ba ₂ MgCu ₈ O ₁₃₊	277	Κ	2010
(Sn₅In)Ba₄Ca₂Cu⊥iO _y	218	Κ	
HgBa2Ca2Cu3O8	135	Κ	
Tl ₂ Ba ₂ Ca ₂ Cu ₃ O ₁₀	128	Κ	
Bi ₂ Sr ₂ Ca ₂ Cu ₃ O ₁₀	110	K	<mark>1988</mark>
SnBa4Y2Cu5Ox	107	Κ	
Pb3Sr4Ca3Cu6Ox	106	Κ	
YSrCa2Cu4O8+	101	Κ	
AuBa2Ca3Cu4O11	99	Κ	
YBa2Cu3O7	92	K	1987
Bi ₂ Sr ₂ CaCu ₂ O ₈	85	Κ	
GdFeAsO _{1-x}	53,5	Κ	2008
MgB ₂	39	К	2001
(La _{1.85} Ba _{.15})CuO ₄	30	Κ	1986
Nb₃Sn	18	Κ	
NbN	16,1	Κ	
C (Nanotubes)	15	Κ	
Nb _{0.6} Ti _{0.4}	9,8	Κ	
Nb	9,25	Κ	
SrTiO ₃	0,35	К	

5 mG/div.

B. Douine & K. Berger, May 29th 2015, CEA Saclay, France

Massif supraconducteur:

- bloc mono ou polycristallin de taille centimétrique
- Possibilité de « piéger » de très important champ magnétique (record du monde: 17.6 T à 26 K)
- Facile à démagnétiser (réchauffer jusqu'à la température critique)
- Peut être utilisé à la température de l'hydrogène liquide (20 K) ou celle de l'azote liquide (77 K)
- Une bonne alternative aux aimants permanents à base de terre rare

Lévitation d'un massif supraconducteur commercial en GaBaCuO refroidie par de l'azote liquide au dessus d'un aimant permanant

U

BiSrCaCuO HTS TAPE

- Ic~200A 77K

YBaCuO COATED HTS TAPE

U

YBaCuO COATED HTS TAPE

Characterization of HTS material

- Bulks
- $-T_c$, $H_{c,irr}$, J_c for small samples
- Bp for entire bulks

• Tapes and coils

Pr Dr Bruno Douine

• Complete penetration magnetic field Bp

• With Bean model

 $\xrightarrow{}$ B_a

• With Power law model $E = E \left(\frac{J}{J} \right)^n - \frac{E_C}{E_C} \left(\frac{J}{J} \right)^{n-1}$

$$B_{P} = \frac{\mu_{0}J_{C} \cdot L}{4} \cdot \ln \left(\frac{\sqrt{R^{2} + \left(\frac{L}{2}\right)^{2} + R}}{\sqrt{R^{2} + \left(\frac{L}{2}\right)^{2} - R}} \right), \qquad E = E_{C} \left(\frac{J}{J_{C}}\right) = \frac{E_{C}}{J_{C}} \left(\frac{J}{J_{C}}\right) \quad J$$

$$B_{P} = \frac{\mu_{0}J_{C} \cdot L}{4} \cdot \ln \left(\frac{\sqrt{R^{2} + \left(\frac{L}{2}\right)^{2} + R}}{\sqrt{R^{2} + \left(\frac{L}{2}\right)^{2} - R}} \right) \left(1 + \frac{\alpha \ln V_{b} + \beta}{n}\right), \qquad Pr \text{ Dr Bruno Douine} \qquad 27$$

• Experimental characterization

Pr Dr Bruno Douine

• Position of seeds

	Case (a)	Case (b)	Case (c)
T _P (10 ⁻³ s)	0.93	1.32	1.4
В _{РМ} (Т)	2.57	3.02	3.1

HTS bulks characterization

HTS bulks characterization

Electrical behavior of HTS tape

Characterization of HTS tapes

- Jc, n and their dependencies are crucial for the modeling and the design of devices
- Each characterization method has its own limitations:
 - Assumptions,
 - Experimental protocol,
 - Sensibility of measurements devices...

CHARACTERIZATION OF HTS TAPES

Electrical experimental determination of *lc*

0

Generally 4 points • method described in IEC 61788-3; -24 and -26

100

10 0.01 90K

0.1

External Magnetic Field (T)

	Type H high-J _e
Width	~4.2 mm
Average	~0.22 mm
thickness	
I _c (77 K,	140-
self-field)	180 A
J _e (77 K,	15-20 kA/
self-field)	cm ²

Progress in performance of DI-BSCCO family N. Ayai a,*, S. Kobayashi a, M. Kikuchi a, T. Ishida a, J. Fujikami a, K. Yamazaki a, S. Yamade a, K. Tatamidani a,

K. Hayashi a, K. Sato a, H. Kitaguchi b, H. Kumakura b, K. Osamura c, J. Shimoyama d, H. Kamijyo e, Y. Fukumoto e Physica C 468 (2008) 1747-1752

CHARACTERIZATION OF HTS TAPE

Magnetic experimental determination of Ic

Experimental set up in GREEN lab

Tapestar, THEVA

Experimental apparatus for reel-toreel critical current measurements

 This non-destructive method could be used to characterize a YBCO tape along its length.

Electrical and thermal stability test of tapes under overcurrent conditions

Setup and measurement

Electrical and thermal stability test of tapes under overcurrent conditions

Pulses up to 10 times the critical sample current
30 second relaxation time after each pulse

FROM HTS TAPES TO HTS COILS...

•DC Characterization of HTS coils

- HTS BiSCCO coil
- Close to iron

- Close to permanent magnet

Pr Dr Bruno Douine

AC loss Characterization of HTS coils

Pr Dr Bruno Douine

Superconducting motors

Cables

 Superconducting fault current limiter and power filter

• ... other applications

Motors design and realization

- 8 motor's projects since 2006
- 6 motor's realizations since 2006
- 2 ANR grants (French National Research Agency)
- 3 national project (SCRYPT, Airbus, Safran...)
- I European project (IMOTHEP)
- Most of our industrial collaborations (GE, Jeumont, Safran, Airbus...)

The original idea of the GREEN

• Superconducting magnetic field concentration motor

B. Douine & K. Berger, May 29th 2015, CEA Saclay, France

Ist - study of an inductor in 2002

- (1) Coils(2) YBaCuO HTS bulks(3) Protection resistor
- (4) Hall probe connections

Coils:

- NbTi wires
- 260 A
- 880 turns

2nd - realization in 2006

B. Douine & K. Berger, May 29th 2015, CEA Saclay, France

ULCOMAP Project in 2008

250 kW	2 poles pairs	HTS inductor	
1500 rpm	50 Hz	Bi 2223	
400∨	Xd : 0.22 pu	30 A	
360 A	Xq:0.1 pu	30 K	

- Zenergy Power GmbH
- Werkstoffzentrum Rheinbach GmbH
- Futura composite
- Converteam (now GE)
- Silesian University
- University of Nancy

ULCOMAP Project

B. Douine & K. Berger, May 29th 2015, CEA Saclay, France

ULCOMAP Project

49

ULCOMAP Project

50

New kind of axial HTS motor including a superconducting magnetic coupling for naval propulsion

June 2014 – B. Dolisy's thesis

Motor principle

ADVANTAGES

- Increases the compactness
- Better efficiency
- Torque transmission without contact

Design and manufacture Goals and difficulties

Goals

- Study the behavior of the complete system (motor and magnetic coupling)
- Validate the superconducting tape modeling
- Increase the know-how of the laboratory

Difficulties

- Manufacturing the stator without ferromagnetic tooth
- Winding of the superconducting coil
- Design the rotating parts in cryogenic atmosphere

Design and manufacture Design choices

DG

+

+

 \rightarrow dry bearings

Slip rings for the alimentation of the inductor

Design and manufacture Stator with copper winding

Description	Unit	Value
Thickness of a coil	mm	15
Opening of a coil	-	60 °
Conductor cross-section	mm²	0.75
Number of turns per coil	-	250
Nominal current	A	7.5
Maximum power	kW	I

FeSiThickness 0.3 mm Øout = 260 mm Øint = 80 mm

Anchorage of the coils

Design and manufacture HTS inductor

BSCCO tape

Description	Unit	Value
Thickness of the tape	mm	0.25
Width of the tape	mm	4.4
Length	m	240
Ic @ 77K Self Field	A	190

BSCCO type Hi 240 m

Characterization of a sample (10 cm) of BSCCO tape @77K

Design and manufacture HTS inductor

Description	Unit	Value
External diameter	mm	100
Internal diameter	mm	70
(minimal bending diameter)		
Thickness / layer	mm	5
Turns / layer	-	60
Length / layer	m	16

Inox core

Current lead

Ferromagnetic yoke

Design and manufacture Final assembly

Tests

Behn-Eschenburg model

No-load test

0

Study and realisation of a flux barrier synchronous superconducting motor

October 2014 – R.Alhasan's thesis

Motor principle

62

Influence of the iron

Assembly

Inductor coil NbTi (4.2K) L_{total} =17 cm L_{active} = 4.5 cm D_{wire} = 0.75 mm N= 850 turns Superconcting screen YBaCuO D =15 cm, e =1 cm Circular Shape

Armature Copper 1680 turns S_{wire}= 0.4 mm²

Assembly

B. Douine & K. Berger, May 29th 2015, CEA Saclay, France

B. Douine & K. Berger, May 29th 2015, CEA Saclay, France

SUPERCONDUCTING ELECTRIC MOTORS WITH SAFRAN (PHD A. COLLE, R. DORGET)

0

SUPERCONDUCTING ELECTRIC MOTORS WITH SAFRAN (PHD A. COLLE, R. DORGET)

HTS coil wound with DI-BSCCO tape

0

3D view of the superconducting machine

Multi-seed YBCO Φ 80 mm from ATZ

Armature winding with Litz wire

SUPERCONDUCTING ELECTRIC MOTORS WITH SAFRAN (PHD A. COLLE, R. DORGET)

0

Superconducting cable

AMPACITY project in ESSEN (Germany)

- I kilometre long high-voltage cable
 three-phase concentric cable
 22 BiSCCO tapes by phase
 three-phase Current Limiter
 I0 kV, 40MW
- KIT, Nexans, RWE

Nexans Cable

SUPERCONDUCTING POWER FILTER

with Pr. Quéval (Paris) and Pr. F. Trillaud (Mexico):

• Modeling and characterization

0

DC Characterization

0

Pr Dr Bruno Douine

SUPERCONDUCTING POWER FILTER

AC +DC Characterization

0

MRI

-LTS coil Liquid Helium 4,2K

- MgB2 coil 10K

ZI/UJ/ZUZT

FUSION

ITER LTS coil

MAGNETIC LEVITATION TRAIN

Maglev MLX01:581 km/h (2011, Yamanashi, Japan)

MAGNETIC LEVITATION TRAIN

MAGNETIC LEVITATION TRAIN

27/03/2024

Thank you for your attention

Pr Dr Bruno Douine