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Introduction
Multi-Agent Systems and Distributed Artificial Intelligence

• Agent: An entity that behaves autonomously in
the pursuit of goals

• Multi-agent system: A system of multiple
interacting agents

An agent is...
• Autonomous: Is of full control of itself
• Interactive: May communicate with other

agents
• Reactive: Responds to changes in the

environment or requests by other agents
• Proactive:Takes initiatives to achieve its goals
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Introduction
Multi-Agent Decisions for Earth Observation

Mission center u0

Ex. User u1

Agency

Comm. station

Ex. User u2

EO Satellite 1

EO Satellite 2

EO Satellite 3 • Constellation Design
• How to compose the constellation?
• How to dimension the constellation?
• Where to position assets?

• Offline Operations
• How to allocate resources?
• How to share resources?
• How to schedule in a

multi-party/multi-mission context?
• Online Operations

• How to adapt activities facing
unpredictable events?

• Which coordination protocols to use?
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Challenges in Earth Observation Constellation Operations
[PICARD et al., 2021]

• Recent years have shown a large increase in the development of satellite
constellations

• Increasing the size allows to capture any point on Earth at higher frequency, e.g. the
Planet Dove constellation

• But, operating numerous Earth observation satellites (EOS) requires to cooperate,
collectively solve and schedule, self-adapt and interact

Many AAMAS-related and Open Research and Technology Questions
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Categories of Challenges

Constellation Design

Offline Operations

Online Operations
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How to Design an EOS Constellation?

Mission center Agency

Agency
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How to Design an EOS Constellation?
Orbits

Mission center Agency

Agency
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How to Design an EOS Constellation?
Constellation composition

Mission center Agency

Agency
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How to Design an EOS Constellation?
Points of interest

Mission center Agency

Agency
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How to Design an EOS Constellation?
On-ground communication stations

Mission center Agency

Agency
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How to Design an EOS Constellation?
Visibility windows

Mission center Agency

Agency
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How to Design an EOS Constellation?
Other actors and stakeholders

Mission center Agency

Agency
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How to Design an EOS Constellation?
System organization

Mission center Agency

Agency

8ENS Rennes SeminarG. Picard07/12/2023



How to Allocate Resources?
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How to Allocate Resources?
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How to Share Resources?
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How to Share Resources?
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How to Schedule in a Multi-satellite and Multi-user Setting?

Mission center Agency

Agency
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How to Adapt Activities when Facing Unpredictable Events?

Mission center Agency

Agency
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Sharing Space Assets
Example: Earth observation satellite constellations

• Problem : exploitation of the same constellation/mission by several stakeholders

Offline reservation
systematic orbit slots

Exclusivity
periods

Online planning
Image acquisition

• Current allocation scheme: first come, first served

• Objective

Preferences
(POI, dates

tolerance, ...)

Candidate slots
(Objects to allocate)

Utilitarian
or fair

allocation
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Orbit Slot Allocation
An example

• 2 agents (a in red, b in blue) requesting acquisitions:
- of points of interest (POI) around the same region
- around 2 time points (3 and 9) every day

• 1 satellite giving access to 2 orbit slots for each time point
(a1, . . . , a3, b1, . . . , b4)

time1 2 3 4 5 6 7 8 9 10 11 12

sat1

a1 a2

b1 b2

sat2

a3

b3 b4
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Orbit Slot Allocation Problem
Graph representation

ga sa

a1 a2

a3

ta
0

0.2
0.5

0

0.5
0.5

gb sb

b1 b2

b3 b4

tb
0

0.5
0.5

0

0.4
0.3

0

0.1

0.5

Paths for graph ga:
πa,0 = [sa, ta]
πa,1 = [sa, a1, a2, ta]
πa,2 = [sa, a3, a2, ta]

Paths for graph gb:
πb,0 = [sb, tb]
πb,1 = [sb, b1, b2, tb]
πb,2 = [sb, b1, b4, tb]
πb,3 = [sb, b3, b2, tb]
πb,4 = [sb, b3, b4, tb]

Forbidden combinations:
(πa,1, πb,1)
(πa,1, πb,3)
(πa,2, πb,1)
(πa,2, πb,3)
(πa,2, πb,4)
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Problem Model
The non-compact case

Definition
A Directed Path Allocation Problem (DPAP) is a tuple ⟨A,G, µ, ϕ⟩, where
• A = {1, . . . , n} is a set of agents
• G = {g1, . . . , gm} is a set of single-source single-sink edge-weighted DAGs
• µ : G → A maps each graph g in G to its owner a in A; we also denote by Ga = µ−1(a)

the set of graphs owned by agent a
• ϕ : Πg1 × . . .×Πgm → {0, 1} is a path compatibility function that indicates whether a

combination of paths (p1, . . . , pm) (one path per graph) is feasible (value 1) or not
(value 0)
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DPAP Solutions
Selecting non conflicting path in each graph

ga sa

a1 a2

a3

ta
0

0.2
0.5

0

0.5
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gb sb

b1 b2

b3 b4

tb
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0.5
0.5

0

0.4
0.3

0

0.1

0.5
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DPAP Solutions
Selecting non conflicting path in each graph, maximizing global utility
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DPAP Solutions
Selecting non conflicting path in each graph, maximizing fairness

ga sa

a1 a2
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DPAP Conflict Formulations
More compact ways to represent conflicts

V-DPAP: Vertex-constrained Directed Path Allocation Problems
• ϕ is defined by a set of conflicts C between vertices of the graph
• each conflict σ ∈ C is a non-empty set of vertices Vσ that cannot be all selected by an

allocation

ga sa

a1 a2

a3

ta
0

0.2
0.5

0

0.5
0.5

gb sb

b1 b2

b3 b4

tb
0

0.5
0.5

0

0.4
0.3

0

0.1

0.5

conflict σ1 = {a2, b2}

conflict σ2 = {a3, b3}
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DPAP Conflict Formulations (cont.)
More compact ways to represent conflicts

R-DPAP: Resource-constrained Directed Path Allocation Problems
• ϕ considers a set of disjunctive resources R = {r1, . . . , rp}
• each vertex in the graph has start date, an end date, a duration, and a required

resource
• there is a conflict if at least two time windows overlap on the same resource when

scheduling without any interruption (non preemptive consumption)

ga sa

a1 a2

a3

ta
0

0.2

0.5

0

0.5

0.5
gb sb

b1 b2

b3 b4

tb
0

0.5

0.5

0

0.4

0.3

0

0.1

0.5

resource sat1

resource sat2
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DPAP Conflict Formulations (cont.)
More compact ways to represent conflicts

ga sa

a1 a2

a3

ta
0
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time1 2 3 4 5 6 7 8 9 10 11 12

sat1

a1 a2

b1 b2

sat2

a3

b3 b4
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Properties

• V-DPAP is NP-complete (via reduction of 3-SAT)
• R-DPAP is NP-complete (via reduction of 1-machine scheduling problem)
• There exists an equivalent V-DPAP to any R-DPAP

• by generating a set of item selection conflicts that is equivalent to the set of selections
forbidden by the scheduling problem

→ We focus on the definition of algorithms for solving V-DPAP (because limited number
of requests)

22ENS Rennes SeminarG. Picard07/12/2023



Properties

• V-DPAP is NP-complete (via reduction of 3-SAT)
• R-DPAP is NP-complete (via reduction of 1-machine scheduling problem)
• There exists an equivalent V-DPAP to any R-DPAP

• by generating a set of item selection conflicts that is equivalent to the set of selections
forbidden by the scheduling problem

→ We focus on the definition of algorithms for solving V-DPAP (because limited number
of requests)

22ENS Rennes SeminarG. Picard07/12/2023



How to solve V-DPAP?
Sorry, no detail here... see [MAQROT et al., 2022; ROUSSEL et al., 2023b]

1 Optimal utilitarian allocation (util) MILP-based
2 Optimal leximin allocation (lex) MILP-based iterated w/ revision
3 Approximate leximin allocation (a-lex) MILP-based iterated wo/ revision
4 Greddy allocation (greedy) adhoc
5 round-robin path allocation (p-rr) adhoc
6 round-robin node allocation (n-rr) adhoc
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Experimental Evaluation

Generation Parameters Values

Constellation

Altitude 500 km
Number of orbital planes np 2, 4, 8, 16
Number of satellites/plane 2

Inclination 40°
Scheduling
horizon

Start 01-01-2020
Duration 180 days

Problems Number of users 4
Type V-DPAP, R-DPAP

Requests

Number of requests/user 2
Requested Observation Times 3 RTs/request
Maximum random time shift δr 1 hour

Tolerance ∆ 1 hour
Minimum slot duration minD 120 seconds

Satisfaction mode full, partial

Algorithms Type util, lex, a-lex, greedy, p-rr, n-rr
CPLEX Time Limit 120 seconds
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Experimental Evaluation (cont.)

Problem Properties np

2 4 8 16

V-DPAP

Conflicts 37715.34 74009.12 146657.94 291831.52
Conflict size 2.0 2.0 2.0 2.0
Slots per RT 1.94 3.81 7.54 15.01

Slot duration (s) 618.10 616.44 616.91 616.66

R-DPAP

Conflicts 1715.38 3527.42 6981.19 13929.55
Conflict size 3.28 3.17 3.21 3.19
Slots per RT 1.94 3.81 7.54 15.01

Slot duration (s) 618.10 616.44 616.91 616.66
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Results for full request satisfaction mode
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Figure: V-DPAP
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Results for full request satisfaction mode (cont.)
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Results for flexible request satisfaction mode
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Results for flexible request satisfaction mode (cont.)
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Results for flexible request satisfaction mode (cont.)

0 1 2 3 4

2 orbital planes

a-lex lex util greedy p-rr n-rra-lex lex util greedy p-rr n-rra-lex lex util greedy p-rr n-rra-lex lex util greedy p-rr n-rra-lex lex util greedy p-rr n-rr

Figure: Utility profiles (in leximin order) for the first 5 instances for a constellation with 2 orbital plans
(4 satellites) and each algorithm (south: best utility over all agents; west: second best utility; north:
third best utility; east: worst utility), for flexible requests encoded as V-DPAP.
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Where to find detailed info?

• Path allocation [MAQROT et al., 2022]

• DPAP and related methods [ROUSSEL et al., 2023b]

• More complex requests and CP-based methods [MAQROT et al., 2022]

• Some data [ROUSSEL et al., 2023a]

r1 (periodic-4h)

r2 (periodic-4h)

r3 (periodic-4h)

r4 (global-30min)

9am 1pm 5pm

sat1

sat2
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Inter-Exclusive Coordinated Scheduling

• We focus here on collective observation
scheduling on a constellation where
some users have exclusive access to
some orbit portions

⇒ Answer to strong user expectations to
benefit both from a shared system (to
reduce costs) and a proprietary system
(total control and confidentiality)

Mission center u0

Ex. User u1

Agency

Comm. station

Ex. User u2

EO Satellite 1

EO Satellite 2

EO Satellite 3
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Scheduling Observations on an EOS Constellation
Illustrative Example
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The Problems Behind

• How to coordinate exclusive user plans, without
disclosing private plans, whilst meeting system
constraints (memory, energy, etc.)

• How to couple private and non-private
observations as to maximize the system
cost-efficiency?
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EOSCSP Model [PICARD, 2022]

Earth Observation Satellite Constellation Scheduling with Exclusives Problem is a tuple

P = ⟨S,U ,R,O⟩

• S = {s = ⟨tstart
s , tend

s , κs, τs⟩} is a set of satellites
• U = {u = ⟨eu, pu⟩} is a set of users
• R = {r = ⟨tstart

r , tend
r ,∆r, ρr, pr, ur, θr⟩} is a set of requests

• O = {o = ⟨tstart
o , tend

o ,∆o, ro, ρo, so, uo, po⟩} is a set of observation opportunities

A solution to an EOSCSP is a mapping M = {(o, t) | o ∈ O, t ∈ [tstart
o , tend

o ]}
s.t. the overall reward is maximized (sum of the rewards of the scheduled observations):
argmaxM

∑
(o,t)∈M ρo
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How to Solve EOSCSPs?

• Centralized allocation

• Exact solving (e.g. MILP), but won’t scale-up
• Heuristic solving (e.g. greedy)
✗ private plan disclosure

• Distributed allocation

• Auctions (e.g. PSI, SSI, CBBA)
• Distributed optimization (e.g. DCOPs)
✓ plans remain private
 requires some coordination/communication
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Auction-based Coordination for EOSCSP
Focus on Resource/Task Allocation

Many application fields, as Collective Robotics, make use of market-based approach to
allocate tasks/resources to robots

• A set of resources (robots, satellites, etc.), R = {r1, . . . , r|R|}
• A set of tasks, T = {t1, . . . , t|T |}, each having a time-related and operation

constraints
• Find an allocation of tasks to resources, wrt. some consistency constraints
≈ multi-item allocation: each resource is allocated several tasks (bundle)
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Auction-based Coordination for EOSCSP
Allocating non exclusive observations to best exclusive portions

Auction-based approches are relevant for satellite task allocation [PHILLIPS and PARRA, 2021]

• Combinatorial Auctions (CA) [CRAMTON

et al., 2010]
• Parallel Single Item Auctions (PSI)

[KOENIG et al., 2006]

• Each agent bids on the whole set of
tasks in parallel

• Sequential Single Item Auctions
(SSI) [LAGOUDAKIS et al., 2005]

• Each agent sequentially bids on a
single task wrt to the already allocated
tasks

• Consensus-based Bundle Auction
(CBBA) [CHOI et al., 2009]

• Each agent bids on some bundle of
tasks and converge to a consensus
with other agents

39ENS Rennes SeminarG. Picard07/12/2023



Auction-based Coordination for EOSCSP
Allocating non exclusive observations to best exclusive portions

Auction-based approches are relevant for satellite task allocation [PHILLIPS and PARRA, 2021]

• Combinatorial Auctions (CA) [CRAMTON

et al., 2010]

• Parallel Single Item Auctions (PSI)
[KOENIG et al., 2006]

• Each agent bids on the whole set of
tasks in parallel

• Sequential Single Item Auctions
(SSI) [LAGOUDAKIS et al., 2005]

• Each agent sequentially bids on a
single task wrt to the already allocated
tasks

• Consensus-based Bundle Auction
(CBBA) [CHOI et al., 2009]

• Each agent bids on some bundle of
tasks and converge to a consensus
with other agents

39ENS Rennes SeminarG. Picard07/12/2023



Auction-based Coordination for EOSCSP
Allocating non exclusive observations to best exclusive portions

Auction-based approches are relevant for satellite task allocation [PHILLIPS and PARRA, 2021]

• Combinatorial Auctions (CA) [CRAMTON

et al., 2010]
• Parallel Single Item Auctions (PSI)

[KOENIG et al., 2006]

• Each agent bids on the whole set of
tasks in parallel

• Sequential Single Item Auctions
(SSI) [LAGOUDAKIS et al., 2005]

• Each agent sequentially bids on a
single task wrt to the already allocated
tasks

• Consensus-based Bundle Auction
(CBBA) [CHOI et al., 2009]

• Each agent bids on some bundle of
tasks and converge to a consensus
with other agents

39ENS Rennes SeminarG. Picard07/12/2023



Auction-based Coordination for EOSCSP
Allocating non exclusive observations to best exclusive portions

Auction-based approches are relevant for satellite task allocation [PHILLIPS and PARRA, 2021]

• Combinatorial Auctions (CA) [CRAMTON

et al., 2010]
• Parallel Single Item Auctions (PSI)

[KOENIG et al., 2006]

• Each agent bids on the whole set of
tasks in parallel

• Sequential Single Item Auctions
(SSI) [LAGOUDAKIS et al., 2005]

• Each agent sequentially bids on a
single task wrt to the already allocated
tasks

• Consensus-based Bundle Auction
(CBBA) [CHOI et al., 2009]

• Each agent bids on some bundle of
tasks and converge to a consensus
with other agents

39ENS Rennes SeminarG. Picard07/12/2023



Auction-based Coordination for EOSCSP
Allocating non exclusive observations to best exclusive portions

Auction-based approches are relevant for satellite task allocation [PHILLIPS and PARRA, 2021]

• Combinatorial Auctions (CA) [CRAMTON

et al., 2010]
• Parallel Single Item Auctions (PSI)

[KOENIG et al., 2006]

• Each agent bids on the whole set of
tasks in parallel

• Sequential Single Item Auctions
(SSI) [LAGOUDAKIS et al., 2005]

• Each agent sequentially bids on a
single task wrt to the already allocated
tasks

• Consensus-based Bundle Auction
(CBBA) [CHOI et al., 2009]

• Each agent bids on some bundle of
tasks and converge to a consensus
with other agents

39ENS Rennes SeminarG. Picard07/12/2023



Auction-based Coordination for EOSCSP
Allocating non exclusive observations to best exclusive portions

Auction-based approches are relevant for satellite task allocation [PHILLIPS and PARRA, 2021]

• Combinatorial Auctions (CA) [CRAMTON

et al., 2010]
• Parallel Single Item Auctions (PSI)

[KOENIG et al., 2006]

• Each agent bids on the whole set of
tasks in parallel

• Sequential Single Item Auctions
(SSI) [LAGOUDAKIS et al., 2005]

• Each agent sequentially bids on a
single task wrt to the already allocated
tasks

• Consensus-based Bundle Auction
(CBBA) [CHOI et al., 2009]

• Each agent bids on some bundle of
tasks and converge to a consensus
with other agents

39ENS Rennes SeminarG. Picard07/12/2023



Auction-based Coordination for EOSCSP
Allocating non exclusive observations to best exclusive portions

Auction-based approches are relevant for satellite task allocation [PHILLIPS and PARRA, 2021]

• Combinatorial Auctions (CA) [CRAMTON

et al., 2010]
• Parallel Single Item Auctions (PSI)

[KOENIG et al., 2006]

• Each agent bids on the whole set of
tasks in parallel

• Sequential Single Item Auctions
(SSI) [LAGOUDAKIS et al., 2005]

• Each agent sequentially bids on a
single task wrt to the already allocated
tasks

• Consensus-based Bundle Auction
(CBBA) [CHOI et al., 2009]

• Each agent bids on some bundle of
tasks and converge to a consensus
with other agents

39ENS Rennes SeminarG. Picard07/12/2023



Auction-based Coordination for EOSCSP
Allocating non exclusive observations to best exclusive portions

Auction-based approches are relevant for satellite task allocation [PHILLIPS and PARRA, 2021]

• Combinatorial Auctions (CA) [CRAMTON

et al., 2010]
• Parallel Single Item Auctions (PSI)

[KOENIG et al., 2006]

• Each agent bids on the whole set of
tasks in parallel

• Sequential Single Item Auctions
(SSI) [LAGOUDAKIS et al., 2005]

• Each agent sequentially bids on a
single task wrt to the already allocated
tasks

• Consensus-based Bundle Auction
(CBBA) [CHOI et al., 2009]

• Each agent bids on some bundle of
tasks and converge to a consensus
with other agents

39ENS Rennes SeminarG. Picard07/12/2023



Applying Auction-based Allocation to EOSCSP
General Scheme

1 Identify non exclusive requests possibly fulfilled in exclusive portions
2 Send identified requests to exclusive users
3 Solve the allocation problem using PSI, SSI or CBBA

• Bids are computed as the best marginal costs of integrating requests in their current
plans (which amounts to solve scheduling problems...)

4 Allocate as many remaining requests outside exclusive windows
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DCOP-based Coordination for EOSCSP
Allocating non exclusive observations to best exclusive portions

• Consider the collective decision for
allocating non exclusive tasks to exclusive
windows

• Collective decision to coordinate exclusive
users’ decisions modeled as a
distributed constraint optimization
problem (DCOP)

• As for auctions, exclusive users aim to
minimizing the marginal cost of
integrating non exclusive tasks in their
schedule, while meeting some operational
constraints
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DCOP-based Coordination for EOSCSP
General Scheme

1 Identify non exclusive requests possibly fulfilled in exclusive windows
2 Send each identified request r to exclusives users, one by one
3 Solve the problem of r using a DCOP solution method (e.g. DPOP [Petcu2005])

• Costs are computed as the best marginal cost of integrating requests in their current
plan (which amounts to solve a scheduling problem...)

4 Allocate as many remaining requests outside exclusive windows

2 3 4 5 6 7 8 9 10
time

s0

s1

s2

sa
te

lli
te

o0,0,0

o0,1,0

o0,2,0

o0,3,0

o0,4,1

o0,7,1

o1,0,1

o2,0,0

o2,1,0

o0,0,1

o0,2,1

o0,3,1

o0,5,1

o0,6,1

o1,0,0

o0,1,1

o0,4,0

o0,5,0

o0,6,0

o0,7,0

o2,0,1

o2,1,1

u0

u1

u2

42ENS Rennes SeminarG. Picard07/12/2023



DCOP-based Coordination for EOSCSP
DCOP Model

A DCOP ⟨A,X ,D, C, µ⟩ is defined for a given request r, and a current scheduling

• The agents are the exclusive users which can potentially schedule r:

A = {u ∈ Uex|∃(s, (tstart
u , tend

u )) ∈ eu,∃o ∈ θr s.t. so = s, [tstart
u , tend

u ]∩[tstart
o , tend

o ] ̸= ∅}
(1)

• Each agent u owns binary decision variables, one for each observation o ∈ O[u]r and
exclusive e in its exclusives eu, stating whether it schedules o in e or not:

X = {xe,o|e ∈
⋃

u∈A eu, o ∈ O[u]r} (2)
D = {Dxe,o = {0, 1}|xe,o ∈ X} (3)

with O[u]r = {o ∈ θr|∃(s, (tstart
u , tend

u )) ∈ eu, s.t. so = s, [tstart
u , tend

u ] ∩ [tstart
o , tend

o ] ̸= ∅} are
observations related to request r that can be scheduled on u’s exclusives

• µ associates each variable xe,o to e’s owner
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DCOP-based Coordination for EOSCSP (cont.)
DCOP Model

• Constraints should check that at most one observation is scheduled per request (4),
that satellites are not overloaded (5), that at most one agent serves the same
observation (6)

∑
e∈⋃

u∈A eu
xe,o ≤ 1, ∀u ∈ X ,∀o ∈ O[u]r (4)∑

o∈{o∈O[u]r|u∈A,so=s},e∈⋃
u∈A eu

xe,o ≤ κ∗
s, ∀s ∈ S (5)∑

e∈⋃
u∈A eu

xe,o ≤ 1, ∀o ∈ O (6)

• The cost to integrate an observation in the current user’s schedule should be
assessed to guide the optimization process

c(xe,o) = π(o,Muo), ∀xe,o ∈ X (7)
where π evaluates the best cost obtained when scheduling o and any combination of
observations from Muo

, as to consider all possible revisions of uo’s current schedule

C = {(4), (5), (6), (7)} (8)
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Highly conflicting randomly generated problems
5-min horizon with overlapping requests and limited capacity

250 500 750 1000 1250 1500
nb observations

500

750

1000

1250

1500

1750

2000

2250

re
w

ar
d

Reward

cbba
greedy
psi
s dcop (dpop)
ssi

250 500 750 1000 1250 1500
nb observations

10−3

10−2

10−1

100

101

102

103

tim
e

(s
)

Computation time

cbba
greedy
psi
s dcop (dpop)
ssi

250 500 750 1000 1250 1500
nb observations

104

105

106

107

lo
ad

(b
yt

es
)

Communication load

cbba
greedy
psi
s dcop (dpop)
ssi

250 500 750 1000 1250 1500
nb observations

101

102

103

104

m
es

sa
ge

s

Messages

cbba
greedy
psi
s dcop (dpop)
ssi

✗ cbba and s_dcop requires extra-computation time (≈ 1000s)
✓ cbba and s_dcop provide the best solutions wrt. reward
✓ cbba exchanges fewer messages of small size
✓ ssi remains the best compromise wrt. solution quality, computation time and

communication load
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Realistic randomly generated problems
6-hour horizon with numerous requests and large capacity
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✓ cbba does require less time to compute than s_dcop
✓ s_dcop and cbba can perform many computation concurrently
⇒ There is room for computation speedup in real distributed settings
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⇒ There is room for computation speedup in real distributed settings
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Where to find detailed info?

• Initial model definition [PICARD, 2022]

• Auction-based and DCOP-based solution methods [ibid.]

• More complex requests and decentralized auctions [PICARD, 2023a]

• Some data [PICARD, 2023b]
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Outline

1 Introduction

2 Challenges in Earth Observation Constellation Operations

3 Focus #1: Sharing Space Assets

4 Focus #2: Coordinating Asset Usage

5 Conclusion
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Wrap-up

• Key terms for NewSpace: multi-asset, multi-user, multi-system...
• Asset sharing means cost-efficiency, but requires automated coordination and

privacy/sovereignity preservation
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Wrap-up

• How to coordinate such composite systems?
• Efficiency
• Fairness
• Explainability

• Multi-agent Systems
• Resource allocation and combinatorial auctions
• Distributed optimization
• Federated and multi-agent learning
• . . .
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Our Next Steps

• Even more complex requests
• Periodic intra-/inter-day, short-/long-term
• Large area and responsiveness

• Even more complex systems
• Weather uncertainties
• Constellation federations
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