Vibration damping of structures coupled to passive piezoelectric networks

Boris Lossouarn

Laboratoire de Mécanique des Structures et des Systèmes Couplés (LMSSC)

and co-authors from

Conservatoire national des arts et métiers

École normale supérieure de Rennes Georgia Institute of Technology University of Liège École Navale...

Séminaire du département Mécatronique, ENS Rennes, 11 février 2020

le c**nam**

Laboratoire de Mécanique des Structures et Syst. Couplés

Thématiques de recherche du LMSSC

Projets et collaborations

- Projets industriels
 - ► ARIANE GROUP, SAFRAN, AIRBUS, NAVAL GROUP...

- Collaborations recherche avec
 - des laboratoires de recherche en France
 - des laboratoires de recherche à l'étranger
 - des organismes de recherche : DGA, CNES, CSTB, ...

- Projets transverses avec des partenaires d'autres disciplines
 - Modélisation mécanique pour l'archéologie virtuelle : restitution d'un char celtique à deux roues - Coll. avec le Musée d'Archéologie de Saint-Germain

Diffusion de la culture scientifique et technique

Organisation d'évènements pour le grand public

- ▷ Quelques exemples:
 - Nuit européenne des musées : Immersion sonore 3D
 - Fêtes de la science avec le Musée des arts et métiers : Conception d'un aéronef; Bruit et vibrations : du réel au virtuel; ...

Outline

1 Laboratoire de Mécanique des Structures et des Systèmes Couplés

- Piezoelectric tuned vibration absorber
- Inite element models and optimization for complex structures
- Environmental parameters: beyond the linear shunt 4
- Multimodal vibration damping 5
- 6 Conclusions and perspectives

Outline

Piezoelectric tuned vibration absorber

- 3 Finite element models and optimization for complex structures
- 4 Environmental parameters: beyond the linear shunt
- 5 Multimodal vibration damping
- 6 Conclusions and perspectives

Passive vibration mitigation

• Constrained viscoelastic patches

Piezoelectric patches connected to

an electrical network

(🖉 Lucie Rouleau)

8

Piezoelectric damping offers great perspectives

Vibration reduction for structural integrity and increased lifespan \rightarrow Ex.: Turbofan engine (Sénéchal, 2011 + Thierry, 2016 / Safran)

Piezoelectric patch connected to a passive electrical circuit

- ightarrow Resonant shunt = Inductor + Resistor (alpha Hagood & von Flotow, 1991)
- ightarrow Electrical resonance tuned to a single and linear mechanical mode

Piezoelectric damping offers great perspectives

Vibration reduction for structural integrity and increased lifespan \rightarrow Ex.: Turbofan engine (\measuredangle Sénéchal, 2011 + Thierry, 2016 / Safran)

Piezoelectric patch connected to a passive electrical circuit

- \rightarrow Resonant shunt = Inductor + Resistor (\checkmark Hagood & von Flotow, 1991)
- \rightarrow Electrical resonance tuned to a single and linear mechanical mode

Electromechanical Tuned Mass Damper

Electromechanical Tuned Mass Damper

C

ł

$$\implies \left(\frac{U}{F}\right)_{\text{adim.}} = \frac{1+2j\frac{\xi_e}{\Omega_e}\Omega - \left(\frac{\Omega}{\Omega_e}\right)^2}{\left[1-\left(\frac{\Omega}{\Omega_o}\right)^2\right]\left[1+2j\frac{\xi_e}{\Omega_e}\Omega - \left(\frac{\Omega}{\Omega_e}\right)^2\right] - \frac{k_{c0}^2}{1+k_{c0}^2}}$$

Coupling coefficient k_{c0} Mechanical resonance Ω_o
Electrical damping ξ_e Electrical resonance $\Omega_e = \frac{1}{\sqrt{LC^e}}$

Tuning of the resonant shunt

<u>Transfer function criterion</u>: $(\Omega_e)_{opt} = \Omega_o$ $(\xi_e)_{opt} = \sqrt{\frac{3}{8}}k_c$

Several solutions to obtain large inductance values

Synthetic inductor

with analog circuit (🖉 Antoniou, 1969)

 $j\omega C_1 P_2 R_3 \frac{R_1}{R_2} - P_1 \frac{R_1}{R_2}$

Several solutions to obtain large inductance values

Synthetic inductor with analog circuit (Antoniou, 1969)

Synthetic impedance with digital controler (∠ Fleming, 2002)

 $j\omega C_1 P_2 R_3 \frac{R_1}{R_2} - P_1 \frac{R_1}{R_2}$

 $Z(\omega)$

Several solutions to obtain large inductance values

Synthetic inductor with analog circuit (Antoniou, 1969)

Synthetic impedance with digital controler (∠ Fleming, 2002)

 $j\omega C_1 P_2 R_3 \frac{R_1}{R_2} - P_1 \frac{R_1}{R_2}$

 $Z(\omega)$

 $j\omega L_{eq}(\omega) + R_{eq}(\omega)$

Electrical components with high quality factors

Resonant shunt ightarrow Specifications on L and R

Restriction on the available room

Window utilization factor

$$k_u = rac{NS_w}{A_N} pprox 0.5$$
 when full

Magnetic cores with high permeance $(A_L \ge 10 \ \mu\text{H})$ \rightarrow Cores in ferrite or Nanocrystalline toroids (Vitroperm 500F)

+ Energy considerations...

Resonant shunts can be implemented with passive inductors

Outline

D Laboratoire de Mécanique des Structures et des Systèmes Couplés

2 Piezoelectric tuned vibration absorber

Inite element models and optimization for complex structures

4 Environmental parameters: beyond the linear shunt

- 5 Multimodal vibration damping
- 6 Conclusions and perspectives

From linear piezoelectricity to a finite element model

Constitutive law :

$$\begin{cases} \sigma_i = c_{ij}^E \varepsilon_j - e_{ji} E_j \\ D_i = e_{ij} \varepsilon_j + \epsilon_{ij}^\varepsilon E_j \end{cases}$$

- c_{ij}^E : stiffness const. (with constant E)
- e_{ij} : piezoelectric const.
- $\epsilon_{ij}^{\varepsilon}$: permittivity (with constant ε)

Mass, Stiffness and Coupling matrices

+ Shunt impedance equation: $V = \omega^2 LQ$

Coupling coefficient from open- and short-circuit conditions

$\triangleright \ \mathbf{V} = \mathbf{0}\text{, short-circuit}$

 $\mathbf{M}_m \ddot{\mathbf{U}} + \mathbf{K}_m \mathbf{U} = \mathbf{0}$

 $\rightsquigarrow (\omega_{{
m sc},i}, \Phi_{{
m sc},i})$, short-circuit (sc) eigenmodes

 $\triangleright \mathbf{Q} = \mathbf{0}$, open-circuit

$$\mathbf{M}_{m}\ddot{\mathbf{U}} + \left(\mathbf{K}_{m} + \mathbf{K}_{c}\mathbf{K}_{e}^{-1}\mathbf{K}_{c}^{\mathsf{T}}\right)\mathbf{U} = \mathbf{0}$$

$$\Rightarrow (\hat{\omega}_{\mathsf{oc},i}, \hat{\Phi}_{\mathsf{oc},i}), \text{ open-circuit (oc) eigenmodes}$$

Performance and electrical tuning directly related to the coupling coefficient

$$k_c = \sqrt{rac{\omega_{OC}^2 - \omega_{SC}^2}{\omega_{SC}^2}} \quad \Rightarrow \quad L = rac{1}{C\omega_O^2} \quad \text{and} \quad R = \sqrt{rac{3}{2}} rac{k_c}{C\omega_O}$$

Optimization for maximizing the coupling coefficient

Current developments : uncoupled optimization for thin piezoelectric patches

First experiments on titanium blades (CFM56)

Proof of concept for piezoelectric damping of an industrial structure (-24 dB)

Extension to woven carbon-epoxy fan blades (LEAP)

Mode shapes identification to define positioning of thin PZT patches

(л Thierry, 2016)

Experimental validation of vibration mitigation performance

Significant damping with less than 1% mass addition (PZT = 0.2 mm)

Outline

1 Laboratoire de Mécanique des Structures et des Systèmes Couplés

- 2 Piezoelectric tuned vibration absorber
- 3 Finite element models and optimization for complex structures

4 Environmental parameters: beyond the linear shunt

- 5 Multimodal vibration damping
- 6 Conclusions and perspectives

Temperature has a non-negligible influence

In case of temperature variations: $\Omega_{\rm e}\left(T\right)=\Omega_{\rm o}\left(T\right)$

Datasheets: P.I. Ceramic

$$\begin{split} \Omega_{\rm e} &= 0.9 \ \Omega_{\rm o} \\ \xi_{\rm e} &= (\xi_{\rm e})_{\rm opt} \\ k_{\rm c0} &= 0.12 \end{split}$$

Using a variable inductance or a variable capacitance ?

More details:

R. Darleux et al., JSV, 2018

Experiments to extract temperature dependence

Temperature range:

Room temperature: $22 \,^{\circ}C \implies 60 \,^{\circ}C$

Experiments to extract temperature dependence

 $T_0 = 22 \,^{\circ} \text{C}$ Temperature $T(^{\circ}C)$

Temperature range:

Room temperature: $22 \,^{\circ}C \implies 60 \,^{\circ}C$

Design of passive inductors

$$L = \beta \mu_e N^2$$

 β : geometric constant μ_e : effective magnetic permeability N : turns

Solution B

Choice of a variable capacitor

Vibration damping of a clamped beam

Comparison of adaptive resonant shunt solutions

Without adaptive tuning

Comparison of adaptive resonant shunt solutions

Without adaptive tuning

Comparison of adaptive resonant shunt solutions

Without adaptive tuning

Comparison of adaptive resonant shunt solutions

Without adaptive tuning

Comparison of adaptive resonant shunt solutions

Damping performance maintained on a given temperature range

Excitation dependent tuning \mid Tuning \sim independent from the excitation

Most industrial structures are nonlinear

Objective of this study: Linear + Nonlinear "Mirror"

Yet, nonlinearity strongly affects the performance

Thin lamina $\Rightarrow f \approx K_{\rm L}u + K_{\rm NL}u^3$

- \rightarrow Hardening nonlinearity
- \rightarrow **Detuning** of the resonant shunt

 \rightarrow Nonlinear piezoelectric tuned vibration absorber required !

Similar nonlinearity in the absorber for global compensation

"Nonlinear + Nonlinear = Linear" (

How to implement the nonlinearity in the electrical domain ?

 \rightarrow Same cubic voltage after one-term Harmonic Balance approximation

Inductor design from magnetic component theory

Magnetic saturation: Depends on material, geometry, number of turns...

Relation between total magnetic flux and electrical current $\Rightarrow \Phi = L\dot{Q}$

Intentional nonlinearity in the piezoelectric absorber

A fully passive solution: **Nonlinear inductor**

→ Variation of the inductance value due to **magnetic saturation**

→ 🖉 B. Lossouarn, J.-F. Deü, G. Kerschen, Philosophical Transactions of the Royal Society A, 2018

Flow-induced vibrations can have dramatic consequences

 \rightarrow Structural and acoustic issues

Hydrodynamic test facility at IRENav

Experimental setup:

Acquisition and

Geometry:

- · Cantilevered aluminium flat plate
- Incidence of 0°
- 2 patches on each side

(🖾 Laetitia Pernod)

Vortex induced vibrations

Frequency response for different flow velocities:

Von Kármán vortex shedding:

- Natural frequencies observed
- Additional components with a strong dependance to the velocity

Numerical model involving surrounding fluid

Performance of the piezoelectric shunt

Damping using resonant shunt (1st bending mode)

Frequency [Hz]

Vibration reduction under hydrodynamic flows

RMS value divided by 3

Outline

D Laboratoire de Mécanique des Structures et des Systèmes Couplés

- 2 Piezoelectric tuned vibration absorber
- 3 Finite element models and optimization for complex structures
- Invironmental parameters: beyond the linear shunt
- 6 Multimodal vibration damping
- 6 Conclusions and perspectives

Passive technique for multimodal damping ?

Interconnected array

ightarrow Multi-resonant network

Electrical analogue of the mechanical structure

→ Multimodal damping with a passive electrical network (▲ Porfiri, 2004)

Passive technique for multimodal damping ?

Electrical analogue of the mechanical structure

→ Multimodal damping with a passive electrical network (
Porfiri, 2004)

The analogous network is equivalent to the discrete model

Homogeneous rod for longitudinal wave propagation

Corresponding discrete structure modeled by a lattice of point masses

Analogous network involving capacitors and inductors (Direct analogy)

The analogous network is equivalent to the discrete model

Homogeneous rod for longitudinal wave propagation

Corresponding discrete structure modeled by a lattice of point masses

Analogous network involving capacitors and inductors (Direct analogy)

Array of piezoelectric patches \rightarrow No external capacitors

Same dispersion relations + Analogous boundary conditions → "Multimodal tuned mass damper"

Array of piezoelectric patches \rightarrow No external capacitors

Array of piezoelectric patches \rightarrow No external capacitors

Same dispersion relations + Analogous boundary conditions → "Multimodal tuned mass damper"

Array of piezoelectric patches \rightarrow No external capacitors

Array of piezoelectric patches \rightarrow No external capacitors

Same dispersion relations + Analogous boundary conditions

Array of piezoelectric patches \rightarrow No external capacitors

Same dispersion relations + Analogous boundary conditions

Array of piezoelectric patches \rightarrow No external capacitors

Same dispersion relations + Analogous boundary conditions \rightarrow "Multimodal tuned mass damper"

Models have been validated through experiments

First experimental validation of the control strategy

ightarrow B. Lossouarn, M. Aucejo, J.-F. Deü, Smart Materials & Structures, 2015

Discrete model for a beam

Same method: Discrete model + Direct electromechanical analogy

Beam approximated by a lattice involving the bending stiffness K_{θ}

Analogous network with capacitors, inductors and transformers

Implementation of the analogous network

Analogous boundary conditions: Free = Short circuit, Clamped = Open circuit

Design of inductors and transformers + Capacitors from standard series

Analogous electrical network for a beam

 \rightarrow Experimental modal analysis of an electrical analogue

Broadband damping in the linear regime

Optimal resistance for broadband damping ?

Lowest mode \Rightarrow $Z_L = j\omega L + R_L$ Highest mode \Rightarrow $Z_C = \frac{1}{j\omega C} + R_C$

Electromechanical coupling through piezoelectric patches

Toward a multimodal and nonlinear analogue

Variable electrical resonance due to variable capacitance

 $\text{Nonlinear capacitor}: \ v = \tfrac{1}{C_{\rm L}}q + \tfrac{1}{C_{\rm NL}}q^3 \ \ \Rightarrow \ \ C(Q) \approx \tfrac{1}{\tfrac{1}{C_{\rm L}} + \tfrac{3Q^2}{4C_{\rm NL}}}$

 \rightarrow Solution = Multilayer Ceramic Capacitor

Extension to multimodal damping of plates

Finite difference method based on a square plate unit cell

 $Q_R - Q_L + Q_T - Q_B = -m\omega^2 W_I$ $M_I = D \left(\theta_R - \theta_L + \theta_T - \theta_B\right)$

+ Discrete derivatives

Extension to multimodal damping of plates

Finite difference method based on a square plate unit cell

 $Q_R - Q_L + Q_T - Q_B = -m\omega^2 W_I$ $M_I = D \left(\theta_R - \theta_L + \theta_T - \theta_B\right)$ + Discrete derivatives

+ Discrete derivatives

Obtain the analogous electrical topology

Direct electromechanical analogy: Force = Voltage and Velocity = Current

Obtain the analogous electrical topology

Direct electromechanical analogy: Force = Voltage and Velocity = Current

The network approximates the dynamics of a clamped plate

The network approximates the dynamics of a clamped plate

The network approximates the dynamics of a clamped plate

The network approximates the dynamics of a clamped plate

Vacuum bonding process

Aluminum plate $400 \times 320 \text{ mm}^2$, 1.9 mm thick

20 PZT-5H square sheets $72.4 \times 72.4 \text{ mm}^2$, 0.27 mm thick

3M DP460 two-part epoxy

Analogous coupling generates broadband vibration reduction

- \rightarrow Experimental validation of the electromechanical model
- \rightarrow Multimodal tuned mass damping

Broadband control of a continuous plate with a discrete network

Last plate setup at Cnam (see Robin Darleux...)

Simply supported plate coupled to its analogous electrical network

Current work

- \rightarrow **Non-periodic** and complex structures
- \rightarrow Comparison with **viscoelastic treatments**

1cm 2 3 4 5

Last plate setup at Cnam (see Robin Darleux...)

Simply supported plate coupled to its analogous electrical network

Current work

- \rightarrow Non-periodic and complex structures
- \rightarrow Comparison with viscoelastic treatments

1cm 2 3 4 5

Outline

D Laboratoire de Mécanique des Structures et des Systèmes Couplés

- 2 Piezoelectric tuned vibration absorber
- 3 Finite element models and optimization for complex structures
- Invironmental parameters: beyond the linear shunt
- 5 Multimodal vibration damping
- 6 Conclusions and perspectives

Passive damping with piezoelectric networks

Numerical models for complex electromechanical structures

Experimental validations

- \rightarrow Multimodal damping with resonant electrical networks
- ightarrow Passive, broadband and robust control strategy

 \rightarrow Strong potential for industrial applications

Thank you for your attention !

boris.lossouarn@lecnam.net